
Dynamic CDN against Flash Crowds

Norihiko Yoshida

1 Introduction

With the rapid spread of information and ubiquitous accesses of browsers, new

congestion phenomena on the Internet, �ash crowds, makes traditional techniques

fail to solve. Flash crowds are sudden, unanticipated surges in traf�c volume of

request rates towards particular Web sites. Differing from the consistent Internet

congestions, �ash crowds produce short-term congestions. It makes Web sites over-

provisioned and the hosting Content Delivery Network (CDN) inef�cient and un-

economical. Thus, they pose new challenges to the today's Internet.

The term ��ash crowd� was coined in 1973 by a science �ction writer Larry

Niven in his short novel �Flash Crowd� [31]. In the novel, cheap and easy teleporta-

tion enabled tens of thousands of people worldwide to �ock to the scene of anything

interesting almost instantly, incurring disorder and confusion.

The term was then applied to similar phenomena on the Internet in the late

1990's. When a Web site catches the attention of a large number of people, it gets an

unexpected and overwhelming surge in traf�c, usually causing network saturation

and server malfunction, and consequently making the site temporarily unreachable.

This is the ��ash crowd� phenomenon on the Internet, which is also sometimes re-

ferred to as the �SlashDot effect� [2] or a �Web hotspot� [50]. An example of a �ash

crowd is shown in Fig. 1 [34], which occurred on the �LIVE! ECLIPSE� Web site

[26] on November 3rd, 2005.

Flash Crowds are not frequent phenomena. They differ from those workloads that

vary over time, such as time-of-day effects [13], e.g. more people enjoy the Web

during lunch hours, where long-term periodic trends can be predicted. However,

they are triggered relatively easily, in that even the mere mention of a popular Web

Norihiko Yoshida

Division of Mathematics, Electronics and Informatics, Saitama University, Saitama 338-8570,

Japan, e-mail: yoshida@ics.saitama-u.ac.jp



0 10000 20000 30000 40000 50000 60000 70000

0

200

400

600

800

1000 From 00:00:00 (0) to 19:43:50 (71030)
Interval = 5 seconds

Lo
ad

 (r
eq

ue
st

s)

Time (seconds)

pp

Fig. 1 Flash crowd to the �LIVE! ECLIPSE� site on Nov. 3, 2005

site will produce one. Due to an increase in the frequency of �ash crowds and their

overall unpredictability, �ash crowds have now become a bane of most Web sites.

A conventional CDN works well if the request load is relatively constant. How-

ever, it is static in the sense that it uses a �xed number of surrogates all the time,

and it is permanently prepared for the congested state. Considering the situation of

�ash crowds, resorting to a high level of over-provision suffers from low ef�ciency.

Due to the infrequency of the high load, static CDNs lead to under-utilization of

resources, and the surrogate servers will remain idle most of the time.

Moreover, Web requests can be bursty. It is not easy to predict the peak load of

a �ash crowd. Even a very well-con�gured CDN site may be crippled due to the

demand unpredictability associated with a traf�c surge.

Some solutions have already been proposed to address the problem of �ash

crowds. Promising solutions should incorporate a certain principle: changing the

static CDN into an adaptive dynamic CDN. The network adaptively changes its ar-

chitecture to reach the best optimum according to the observed traf�c load. When

the load is under control, the normal client/server (C/S) con�guration manages the

requests well. When the load exceeds a threshold or ful�lls a certain condition, then

the set of surrogate servers kicks in to absorb the huge number of requests. In this

way, the network is supposed to be more ef�cient as regards resource utilization,

practical in its ability to address �ash crowds and affordable by more Web sites.

There are three main challenges in addressing this issue:

1. How to organize a temporary overlay of surrogate servers quickly. The surrogate

servers should be utilized ef�ciently and need to cooperate with each other al-



most immediately when faced with a �ash crowd. When the �ash crowd departs,

everything should go back to normal operation without involving much overhead.

The impact of being a potential surrogate during the normal period of operation

should be controlled, so that it is minimized as much as possible.

2. How to detect the arrival and departure of a load spike properly. Flash crowds

are different from the normal workloads, whose magnitude and duration depend

on the people's interest toward some triggering events, and it is dif�cult to make

long-term predictions in advance. Thus, the network must be reactive to the ar-

rival of a �ash crowd by relying on short-term quick predictions. The detection

must be careful because any improper detection may result in a waste of re-

sources or oscillations of the network architecture.

3. How to redirect client requests transparently to the temporary overlay. Once the

dynamic CDN is ready for the �ash crowds, the �ooded client requests must be

redirected to any of the surrogates, and they should preferably be redirected in

a load-balancing manner. Different from single site schemes where a local load

balancer works, this redirection must be performed within a wide-area temporary

environment.

We advocate FCAN (Flash Crowds Alleviation Network), a dynamic CDN net-

work that adaptively optimizes the network architecture between C/S and CDN con-

�gurations. We utilize an Internet infrastructure of cache proxies to organize a tem-

porary overlay of surrogate servers. This mode is invoked on the �y when a �ash

crowd comes, but pulled out of action when the normal C/S con�guration works

adequately [7, 33].

This chapter is organized as follows: Sect. 2 provides a brief overview of �ash

crowds and analyzes their triggering, types, and characteristics. It also discusses

how to distinguish �ash crowds from other similar Internet phenomena, Denial of

Service (DoS) and Distributed DoS (DDoS) attacks. It then examines state-of-the-

art research works. By analyzing and comparing several related solutions, it clar-

i�es their advantages and disadvantages. Sect. 3 presents FCAN. It explains how

the network reacts to the beginning and ending of a �ash crowd, how the tempo-

rary surrogates are organized and cooperate with each other, and how redirection

based on DNS (Domain Name System) of�oads the burden on the origin Web site.

It then exhibits simulation-based evaluations using real trace workloads. Section 4

summarizes some visionary thoughts for practitioners. Section 5 presents the fu-

ture research directions with discussions on open issues. Section 6 comprises the

conclusion.

2 Background and Related Work

We �rst study the characteristics of �ash crowds. We show that network bandwidth

is the most serious bottleneck, and a small number of objects is responsible for a

greater percentage of requests (i.e. heavy-tailed behavior). These observations im-

ply that �ooded requests must be redirected away from the server and caching these



�ash-crowd objects could be a possible solution. Study of related work in this con-

text show that there is still room for improvement to the solutions for handling the

problem of �ash crowds.

2.1 Flash Crowds

Usually, sudden events of great interest trigger �ash crowds, whether planned or

unplanned. Some well-analyzed ones include: World Cup 1998 [6], RedHat Linux

image distribution [8], Play-along TV show 2000 and Chilean presidential election

broadcast 1999 [21], and CNN broadcast on the terrorist attacks of September 11,

2001 [13]. In addition, a Web site which is referred to on a popular site, news or

blog often experiences an unusual amount of accesses unexpectedly.

Due to resource limits and/or the network bandwidth, the servers are unable to

handle the high volume of requests. As a result, most users perceive unacceptably

poor performance. Moreover, �ash crowds unintentionally deny service for other

users who either share common paths with the �ash crowd traf�c or who try to

retrieve unrelated information from the same servers [30, 51].

Through analyses of such real traces as mentioned above and other research ef-

forts [19, 27], some signi�cant characteristics can be concluded, as stated below.

These observations allow us to tell when a �ash crowd arrives; how long (or short)

a time we have to take defensive action; how different it is from a malicious attack;

how we can utilize the locality of reference; and more.

1. The increase in the request rate is dramatic, but relatively short in duration. A

�ash crowd lasts as long as the attention span of the concerned audience, from

hours to days, which is relatively short compared to the life span of a Web ap-

plication. Therefore, if we make an over-provision or switch to the conventional

CDN, the results can lead to under-utilization of resources during the normal

operational period, especially for small or personal Web sites, which might ex-

perience �ash crowds only once or twice in their lifetime.

2. The increase in the requests is rapid but not instantaneous. In the case of the

Play-along TV show, the rate increase continued for 15 min. before it reached

its peak. Another case, the September 11, 2001 event, resulted in a massive load

on the CNN Web site which doubled every 7 min., �nally reaching a peak of 20

times higher than the normal load [24]. This property suggests that we still have

adequate time to detect a �ash crowd and react.

3. Network bandwidth is the primary constraint bottleneck. CPU may be a bottle-

neck if the server is serving dynamically generated contents. For instance, on the

morning of September 11, dynamic pages on the MSNBC news Web site con-

sumed 49.4% of �500� (server busy) error codes [32]. However, MSNBC quickly

switched to serving static HTML pages, and the percentage of the error status

codes dropped to 6.7%. Observations also revealed that network bandwidth be-

came the primary constraint bottleneck, and the closer paths are to the server, the

worse they are affected [32]. It is reported that modern PCs could sustain more



network throughput than 1 Gbps when serving static �les [20], while the network

bandwidth of a Web site is typically much lower [40]. Accordingly, we should

focus on alleviating the bandwidth bottleneck around the servers.

4. A small number of contents, less than 10%, is responsible for a large percentage,

more than 90%, of requests. For instance, the MSNBC traces from September 11

showed that 141 �les (0.37%) accounted for 90% of the access, and 1086 �les

(2.87%) for 99% of the access [32]. Moreover, the set of hot contents during a

�ash crowd tends to be small to �t in a cache. This is a promising result implying

that the caching of these 10% contents can be a solution to �ash crowds. We also

observe that this �10/90� rule of reference follows the Zipf-like distribution, in

which the relative probability of a request for the i'th most popular content is

proportional to 1/ia [10]. This property distinguishes �ash crowds from attack

traf�c which is generated automatically by �bots�.

5. More than 60% of contents are accessed only during a �ash crowd. In addition,

among the 10% hot contents, more than 60% are new to being cached. For in-

stance, 61% of contents were uncached in the Play-along case, and 82% in the

Chile case [21]. This implies usual Web caches may not provide the desired level

of protection. Most cache proxies on the Internet will not have the requested con-

tents at the beginning of a �ash crowd. Therefore, most requests would miss in

the caches, and be forwarded to the origin server. Although subsequent requests

would be served from the caches, a large number of initial cache misses will be

generated to the origin server within a short period of time.

6. The number of clients in a �ash crowd is commensurate with the request rate.

This feature can be used to rule out malicious requests. During a �ash crowd,

spikes in requested volumes correspond closely with spikes in the number of

clients accessing the site. The increase in traf�c volume occurs largely because

of the increase in the number of clients, and most requests come from a large

number of client clusters. However, because a server usually slows down during

a �ash crowd, per-client request rates are lower than usual. This indicates that

legitimate clients are responsible for the performance of a server.

While studying the behavior of �ash crowds, we need to identify and distinguish

related but distinct phenomena, DoS attacks. A DoS attack is �an explicit attempt

by attackers to prevent legitimate users of a service from using that server� [12].

It overwhelms a target server with a huge amount of packets in primarily a brute

force manner, so as to saturate the target's connection bandwidth or deplete the

system resources to subvert the normal operation. Some well-known DoS attacks

include: SYN attack [11], Code Red attack [29], and Password Cracking [18]. Re-

cently, DDoS attacks, which employ a large number of �bots� emitting requests to

the target, have also been frequently reported [22].

DoS attacks share several characteristics with �ash crowds. They both overload

a server's Internet connection and result in partial or complete failure. However,

the server should ignore DoS attacks during �ash crowd protection, and handle le-

gitimate requests only. There are some ways to distinguish DoS attacks from �ash

crowds [21] : (1) Client distribution across ISPs and networks does not follow popu-

lation distribution; (2) Cluster overlap which a site sees before and during the attack



is very small; (3) Per-client request rate is stable during the attack and deviates sig-

ni�cantly from normal; and (4) The distribution of �les (which may not even exist

on the server) targeted by attackers is unlikely to be Zipf-like.

By exploiting these differences, a server may take a strategy for distinguishing

DoS attacks from �ash crowds, and discard these malicious requests as early as pos-

sible. It may monitor clients that access the site and their request rates, and perform

some checks on the content of packets, HTTP headers, and arrival rates.

More details and implementations on how to distinguish malicious requests from

legitimate ones are beyond the scope here, as exclusive coverage of works in this

respect can be found in literature [21, 22, 35]. This chapter assumes that servers have

already ruled out malicious requests of DoS attacks by using some mechanisms.

2.2 Possible Solutions

Solutions proposed so far for addressing �ash crowds are classi�ed into three cate-

gories according to the typical architecture of networks: server-layer, intermediate-

layer and client-layer solutions. Figure 2 shows their schematic overviews.

(a) Server-Layer (b) Intermediate-Layer (c) Client-Layer

Fig. 2 Three solutions

2.2.1 Server-Layer Solutions

As mentioned above, traditional over-provisioning and use of static CDN [3, 25, 43]

on the server-side are straightforward but costly approaches. They are inef�cient

and dif�cult to deal with short-term Internet congestion. Due to the unpredictability

of �ash crowds, any imperfectly provisioned system is likely to fail under sustained

overload conditions.



CDN with Dynamic Delegation J. Jung, et al. [21] proposed an adaptive CDN us-

ing dynamic delegation to improve the protection of origin servers under heavy load

conditions. They organize surrogate servers into groups, with one surrogate within

a group selected to be the primary surrogate. Usually, a DNS server for the CDN

assigns client requests only to primary surrogates. When the load on the primary

surrogate reaches a alarming level, the primary surrogates asks DNS to reassign re-

quests to other members in the group called delegates. When a delegate receives

a missing request, it forwards the request not to the origin server but to the del-

egate's primary. This mechanism is called �dynamic delegation�. When delegates

are engaged, the system behaves like cooperative caching.

Dynamic delegation takes 60% uncached objects into consideration at the begin-

ning of �ash crowds, as mentioned above, and improves the ef�ciency of the system.

It pulls the popular objects from the origin server, and absorbs the cache-miss re-

quests by hierarchical caching. However, the surrogate groups with primaries should

be con�gured manually and permanently even during peaceful periods.

DotSlash DotSlash [50] allows different Web sites to form a mutual-aid community

and to use spare capacity within the community so as to relieve �ash crowds expe-

rienced by any individual site. As a rescue system, DotSlash continuously monitors

the workload at each Web server; when a server becomes heavily loaded, rescue ser-

vices are activated, and once the server's load returns to normal, the rescue services

cease. As a result, a Web site has a dynamic server set which includes a single or a

cluster of �xed origin servers, and a changing set of rescue servers.

Different from most other systems mentioned here and in 2.2.2, which use per-

manent and �xed resources, DotSlash triggers its rescue system on a temporary

mutual-aid community. However, DotSlash needs clients to connect with the origin

server �rst, and then issues a redirected URI containing the virtual host name for

DNS redirection. Consequently, there is a risk that the bandwidth and processing

needed to send the redirection messages may itself overwhelm the origin server.

2.2.2 Intermediate-Layer Solutions

There have been some intermediate-layer solution proposals for dealing with �ash

crowds, which utilize network resources to perform of�oad. Caching techniques

help to alleviate server load during �ash crowds by �ltering out repeated requests

from groups of clients which share a proxy cache.

In general, proxies on the Internet are divided into two types: forward proxies and

reverse proxies. Forward proxies are placed near clients and thus far from the server

end. Their typical functionality includes a �rewall, and caching of static contents.

They are usually shared by many clients and are reasonably powerful and stable.

However, content providers do not have much control over them. Reverse proxies

are placed near the back-end server farm, and act as agents of application providers.

They serve requests on behalf of the back-end servers. Content providers can fully

control their behavior. However, the scale of reverse proxies only goes as far as a

content provider's network bandwidth allows [47].



Multi-Level Caching The solution using multi-level caching [4] argues that with

proper replacement algorithms, a caching infrastructure designed to handle normal

Web loads can be enough to handle �ash crowds. It studies the effects of using

different cache replacement algorithms, changing the placement of caches, using

heterogeneous multi-level caching, and partitioning the ID space based on document

size. The work concludes that using GDSF algorithm [5], the replacement policy in

caches results in signi�cant improvements to the client response times, and server

and network loads.

Multi-Level Caching offers promising results for using caching to address �ash

crowds for small and static objects. The system needs a dedicated deployment of

hierarchical caching placement, and complete control over the infrastructure of for-

ward cache proxies. The system does not address the problem of 60% uncached

objects, and thus it may not provide the desired level of protection to the origin

server at the initial stage. In addition, it currently lacks an adaptive mechanism for

handling �ash crowds �exibly.

BackSlash Backslash [44] uses content-addressable P2P overlays based on dis-

tributed hash tables (DHTs) to build distributed Web server systems. It places copies

of contents on mirror servers which are speci�ed by content providers. DHTs pro-

vide bases for the self-organization of participants, for routing requests, and for load

balancing.

BackSlash uses Web servers and proxies to of�oad the network traf�c. However,

in BackSlash, the contents on mirror servers must be pre-placed and well-organized

in advance, which incurs operation complexity and restricted extensibility of the

system.

CoralCDN CoralCDN [17] leverages the aggregate bandwidth of volunteers to

absorb and dissipate most of the traf�c for Web sites using the system. As we have

seen in Chap. 1, CoralCDN exploits overlay routing techniques on top of a key/value

indexing infrastructure: a P2P distributed sloppy hash table, or DSHT, which allows

nodes to locate nearby cached copies of Web objects without querying more dis-

tant nodes and which prevents hot spots in the infrastructure, even under degenerate

loads. We also know that to use CoralCDN, a content publisher or someone posting

a link to a high-traf�c portal simply appends �.nyud.net:8090� to the hostname in a

URL.

Coral uses volunteers' additional capacities to absorb the overwhelming traf�c. It

combines a set of P2P-based reverse proxies to create cache objects on demand, and

adopts DNS to redirect client requests transparently. CoralCDN is always waiting

for the incoming requests, whose URL needs to be manually con�gured by append-

ing �.nyud.net:8090� in advance. With a modi�ed URL, CoralCDN is capable of

object-oriented redirection, however, it sacri�ces user unawareness of the system.



2.2.3 Client-Layer Solutions

Client-side solutions make clients help each other in sharing objects so as to dis-

tribute the load burden from a centralized server. An origin Web server can me-

diate client cooperation by redirecting a client to another client that has recently

downloaded the objects, as in Squirrel [28], Pseudoserving [23] and CoopNet [32].

Clients can also form P2P overlay networks and use search mechanisms to locate re-

sources. For example, PROOFS [45] employs randomization to build client side P2P

overlay networks, and BitTorrent [9] breaks large �les into small parts for ef�cient

retrieval. In general, these solutions rely on the client-side cooperation. They must

be deployed on users' desktop PCs, which are thus likely to prevent their widespread

deployment.

CoopNet Cooperative networking [32] is a P2P caching solution that complements

traditional client-server and client-Web proxy communication rather than replacing

it. It has previously-registered clients who have already downloaded content, and

they in turn serve the content to other clients. CoopNet uses HTTP-based redirection

to route requests, and to select peers according to their nearby location.

In CoopNet, P2P communication kicks in during �ash crowds to share the load,

and gets out of the way when the C/S communication works �ne. CoopNet uses a

server-based redirection, which has the risk of a �single point of failure�.

PROOFS PROOFS [39, 45] is comprised of two protocols. The �rst forms and

maintains a network overlay. The second performs a series of randomized, scoped

searches for objects atop the overlay formed by the �rst protocol. Nodes continually

perform what is called a �shuf�e operation�. The shuf�e is an exchange of a subset

of neighbors between a pair of clients, and can be initiated by any client. Shuf�ing

is used to produce an overlay that is �well-mixed�, in that a client's neighbors are

essentially drawn at random from the set of all clients that participate in the over-

lay. Once a random state is reached, scoped searches for objects can be performed

atop the overlay. Objects are located by randomly visiting sets of neighbors until a

node is reached that contains the object. Through combination of theoretical results

and simulation, PROOFS claims to be robust for the overlay partitioning, for peer

dynamic joining/leaving, and for limiting participation in the system.

PROOFS uses an unstructured �rst generation P2P system, and thus requires a

lower preparation cost, and it offers good performance under the condition of �ash

crowds. A signi�cant amount of attention has been paid to second generation P2P

architectures such as CAN [36], CHORD [46], and Pastry [38], in which participants

have a sense of direction as to where to forward requests. They provide bene�t over

their �rst generation counterparts in terms of the amounts of network bandwidth

utilized and the time taken to locate those documents. However, to be able to han-

dle documents whose popularity suddenly spikes without inundating those nodes

responsible for serving these documents, the �rst generation architectures (which

are simpler and more lightweight) are preferable.



2.2.4 Other Works

Grid technologies allow �coordinated resource sharing and problem solving in dy-

namic, multi-institutional organizations� [16], with a focus on large-scale com-

putational problems and complex applications that involve many participants and

different types of activities and interactions. Internet data centers host multiple Web

applications on shared hardware resources. A. Chandra, et al. suggest reacting to

changing application loads by reallocating resources to overloaded applications,

borrowing these resources from other under-utilized applications if necessary [13].

As a last resort, a Web site can use admission control [14, 15, 49] to prevent

itself from being overloaded, by rejecting a fraction of the client requests and only

admitting preferred clients.

3 FCAN: Flash Crowds Alleviation Network

FCAN [7, 33] is an intermediate-layer solution, using a CDN-like wide-area overlay

network of caching proxies which stores objects, and delivers them to clients, like

the surrogate servers in a CDN. Considering the short duration and unpredictability

of �ash crowds, FCAN invokes the overlay only when a server is overwhelmed

by a large amount of requests, and reorganizes the overlay when necessary. This

dynamicity is the most prominent characteristic of FCAN compared to most of the

above-mentioned related works. The only exception is DotSlash, however, it lacks

an adaptive reorganization feature.

FCAN aims at complementing an existing Web server infrastructure to handle

short-term load spikes effectively, but it is not intended to support a request load

that is constantly higher than the planned capacity of a Web site. It targets small

Web sites, although large Web sites can also gain some bene�t from it.

3.1 Requirements

Below are the functional and nonfunctional requirements which we analyzed in or-

der to make FCAN �exible, reliable, and cost-effective.

Object Delivery First and foremost is the timely delivery of content objects. FCAN

should maintain high availability of the delivery service at all times. Moreover, ac-

cessibility to non-�ash-crowd objects on the same target server should also be en-

sured.

Workload Control FCAN should monitor changes in the increasing load and

control it so that the server does not become overwhelmed. At the same time, when

�ooded requests are of�oaded to the temporary surrogates, FCAN should also have



a workload monitor on each surrogate to detect the leaving of �ash crowds, and to

control the redirected requests so as not to overload the surrogate.

Adaptive Transition FCAN should be sensitive to the load increase and transit

its architecture in a �exible fashion in order to obtain optimum performance output.

The duration time should be short to take the transition into effect. Both the detection

and transition should be conducted automatically.

Request Redirection There should be a mechanism to direct the �ooded requests

by �nding temporary surrogates. Moreover, the most appropriate surrogate should

be selected. It would be ideal if the redirection being carried out is uniformly bal-

anced.

Client Transparency FCAN will be more acceptable if clients could remain un-

changed. It is better for the clients to remain completely unaware of the existence of

FCAN.

Scalability Because Internet-based infrastructures have the potential to reach the

entire world-wide Internet community, FCAN requires the capability to expand its

infrastructure easily, with minimal effort and disruption.

3.2 Design Overview

In peaceful times, the conventional C/S architecture satis�es most of the client re-

quests. Amember server and member cache proxies, both of which comprise FCAN,

do little more than what normal ones do. When a �ash crowd comes, the member

server detects the increase in traf�c load. It triggers a subset of the member proxies

to form an overlay, through which all requests are conducted. All subsequent client

requests are routed to this overlay by DNS-based redirection. If the subset of proxies

(a) Usual State (b) Initial State (c) Enlarged State

Fig. 3 FCAN overview



is not large enough to handle the amount of requests, new proxies are invited, and

the overlay is enlarged. When the �ash crowd declines, some proxies leave, so that

the overlay shrinks and is eventually released. Figure 3 gives an overview of FCAN

at three different states, namely, usual, initial, and enlarged state.

FCAN is not dedicated to a single member server. It is designed to be shared

by several servers in need, even at the same time. Each member server uses its

own overlay, small or large, and servers try mutually to prevent their overlays from

overlapping as much as possible.

Each member proxy is primarily a regular forward cache proxy during its normal

mode, however it acts as a surrogate, somewhat similar to a reverse cache proxy,

serving requests from any user during the anti-�ash-crowd mode. In reality, a mem-

ber proxy serves for several servers, and it is possible that any one server suffers

from �ash crowds while the others do not. Therefore, each member proxy has the

functionality of mixed-mode operations for the forward proxy mode and the surro-

gate (similar to reverse proxy) mode.

3.3 Flash Crowd Detection

As different resources such as network bandwidth, CPU and memory at a server

may potentially become the bottleneck during a �ash crowd, separate workload met-

rics should ideally be used for different resources. Each member server should do

monitoring and overload/underload detection, and perform dynamic transition ac-

cordingly. The current design uses only the access arrival rate as the load metric,

and uses a threshold-based scheme to trigger dynamic transition.

To detect the coming of a �ash crowd, a server observes the volume of its load

periodically. Once the server load exceeds the prede�ned threshold, Thigh, the server

treats it as the coming of a �ash crowd.

During the �ash crowd, each proxy involved in the overlay has a load monitor,

which observes the number of client accesses, and the member server collects the

load information from all the involved proxies periodically. When the load on the

overlay of proxies decreases under a prede�ned threshold, Tlow (< Thigh), the mem-

ber server treats it as the ending of the �ash crowd.

3.4 Network Transition

When the member server detects the beginning of a �ash crowd, it carries out the

following procedure, in order to make some member cache proxies transit into the

anti-�ash-crowd mode in order to form a temporary overlay.

1. Selects a subset of proxies to form a CDN-like overlay of surrogates;



2. Triggers an update of DNS records to change the look-up entries of the Web site

from the server's address to those of the proxies, so that subsequent requests are

gradually redirected to the proxies along with DNS propagation;

3. Disseminates (�pushes�) the �ash-crowd object to the selected proxies, because

more than 60% of the �ash-crowd objects are uncached prior to the arrival of the

�ash crowd, as mentioned above;

4. Prepares to collect and evaluate statistics for the object from the involved proxies,

so as to determine dynamic reorganization and release of the overlay;

Every member cache proxy carries out the following procedure upon request

from the member server:

1. Changes its mode from a proxy to a surrogate (or, in the strict sense, a mixed

mode of a forward proxy and a surrogate, as mentioned above);

2. Stores �ash-crowd objects permanently, which should not expire until the �ash

crowd is over;

3. Begins monitoring the statistics of request rate and load, and reporting them to

the server periodically,

The server selects the subset of proxies by probing them one by one �rst, because

any proxy may already be involved in another �ash crowd alleviation, or it may be

overloaded due to some other reason. This prevents overlapping of more than one

subsets for independent �ash crowds. The subset can be small, even consisting of

only one proxy, because FCAN has the feature of dynamic reorganization, as men-

tioned below. The current design expects network administrators to assign priorities

to proxies for probing orders.

When the member server detects the leaving of the �ash crowd, the involved

proxies are dismissed one by one, in the reverse order of probing, with the following

procedure:

1. The server updates the DNS records;

2. The server noti�es the proxy to be dismissed;

3. The proxy changes its mode from a surrogate to a proxy.

The CDN-like overlay transits back to the normal C/S mode when all the prox-

ies are dismissed. They are not all dismissed at once, since low load may be just

temporary, and the system should therefore remain in the anti-�ash-crowd mode.

3.5 Dynamic Reorganization

Every proxy has its local monitor, which observes the request rate and the overall

load on itself. Proxies involved in the overlay, whether initial or additional, send

feedback information to the server periodically, including the request rate for the

�ash-crowd object and the overall load on the proxy.



Fig. 4 Process �ow overview in FCAN

When the request rate on the proxy is close to Thigh, the proxy informs the server

that the request rate is close to critical and increasing. When most of the proxies

send the same information, the server starts inviting more proxies from the pool of

other �free� member proxies which are not yet being involved in any overlay. The

server probes the free proxies one by one to select a new proxy which can become

utilized. Then the server and the new proxy carry out the same procedure as in 3.4.

When the load on any proxy is below Tlow and no other proxies are suffering from

a high load, the system dismisses them. The selection is done in the reverse order

of invitation. Since DNS propagation may take a longer time, the change in proxy

mode should be done later. If clients still reach the proxy after the DNS update,

the proxy will act as a normal forward proxy, and retrieve the content from its local

cache, or redirect the request to the member server or any temporary surrogate which

is still involved in the overlay.



Figure 4 overviews the process �ows of the server, and the initial and additional

proxies, including network transition (presented in 3.4) and dynamic reorganization.

3.6 DNS-Based Redirection

To protect the server and network from overload, �ooded requests must be redi-

rected. In contrast to single site schemes where local load balancers work, this redi-

rection is done within a wide-area environment, inside which the proxies may be

geographically distributed. As mentioned above, we use DNS-based request redi-

rection. DNS is an infrastructure for all the Internet applications including the Web,

it is ubiquitous across the Internet, and it is transparent to clients.

Authoritative DNS of the member server gives out the addresses of the involved

member cache proxies instead of the address of the origin server when a client tries

to resolve the server name through its local DNS server. The address given to the

client may be any of the proxies under a certain selection policy, possibly in a simple

round-robin manner or preferably in a load-balancing and proximity-based manner.

Redirected requests for �ash-crowd objects are conducted by the target proxy [48].

We use a specialized DNS server (or, in the strict sense, a DNS wrapper), called

TENBIN [41, 42], on the server site which allows DNS look-up entries to be mod-

i�ed dynamically. TENBIN is one of our research products, and has already been

used in practice, for example, in the �Ring Server� [37] and �LIVE! ECLIPSE� [26]

projects. TENBIN also supports policy con�guration for selecting an �appropriate�

address. The policy could be based on a load-weighted algorithm, a proximity-based

algorithm, a cache locality-based algorithm, or it could be conducted as simply as

in a round-robin fashion.

Once being modi�ed, the new addresses are propagated through the Internet to

the client side DNS servers. One problem is that DNS caches may delay the prop-

agation, with the result that the requests still continue to go to the origin server.

This can be controlled by setting DNS records with a short expiration time, i.e. zero

Time to Live(TTL). We have amassed much experience on DNS propagation both

from experiments and from the practical use of TENBIN. It requires 10∼ 15 min. to

complete worldwide propagation, but this is negligible compared to a typical �ash

crowd which may last for several hours or several days [12].

3.7 Simulation-Based Evaluations

For preliminary veri�cation and evaluation of FCAN, we built a thread-based simu-

lator of a virtual network with TCP/UDP and application layers. We have run exper-

iments considering several scenarios of �ash crowds, and below we present one with

real access logs which were provided from the �LIVE! ECLIPSE� project [26]. On

March 29th, 2006, from 9:00 to 11:30 GMT, the project delivered Web streaming,



(a) Access to www.live-eclipse.org (b) Access to www.nishoku.jp

Fig. 5 Accesses to two eclipse streaming sites

from two different server sites, for the solar eclipse that took place in Turkey, Libya,

and Egypt. The two sites were:

• http://www.live-eclipse.org

• http://www.nishoku.jp

While the former was accessed by clients from all over the world, the latter was

accessed mostly by clients in Japan. There was a difference in access patterns for

these two sites, since the expected access rate for the Live-Eclipse site was much

higher than for the Nishoku site. Figure 5 shows the log data of the accesses for

these sites for the period during which the eclipse was in process.

When fed to the simulator, these logs for the two sites were scaled down. The log

of Live-Eclipse has been scaled down by 30, and the log for Nishoku by 10. Every

simulation second corresponds to one minute of real time. Our experiment used two

different member servers: one (SVR01) for Live-Eclipse, and the other (SVR02) for

Nishoku. The experiment used ten member cache proxies for alleviation. The pri-

orities (probing order) of the proxies for these member servers were set differently,

and the initial subsets of proxies were also different between the member servers

according to their priorities and the magnitude of the �ash crowd.

Figures 6 and 7 show the results of the simulation, where Fig. 6 shows the �Live

Eclipse� overlay around SVR01, and Fig. 7 shows the �Nishoku� overlay around

SVR02. The left graphs in Figs. 6 and 7 include average loads of the proxies, while

the right graphs include individual loads.

In the �Live Eclipse� overlay, seven proxies, two initials and �ve additionals,

were involved, as shown below:



(a) Server and average of proxies (b) Server and individual proxies

Fig. 6 Load alleviation in �Live Eclipse� overlay

(a) Server and average of proxies (b) Server and individual proxies

Fig. 7 Load alleviation in �Nishoku� overlay

SVR01 Joins at: Leaves at:

CP8 (initial) 63 211

CP3 (initial) 63 211

CP2 65 191

CP5 145 190

CP7 149 189

CP1 155 188

CP9 174 184

For the �rst 60 sec., the server SVR01 handles the client requests by itself. The

�ash crowd to SVR01 starts at around the 60th second, and the server �rst invites

two proxies to join in the alleviation process. These two and an additional one handle

the load until the next rapid increase starting at around the 150th second. Then four

more proxies are invited one by one. Using all of them, the average load on the

system is kept below the threshold. After the 180th second, the amount of client

requests starts decreasing, and the system dismisses the proxies one by one until

the system is switched back to the C/S mode. The mode change occurs around the

200th second.



In the �Nishoku� overlay, only two proxies, one initial and one additional, are

involved because of the relatively lower load, as presented below:

SVR02 Joins at: Leaves at:

CP0 (initial) 48 189

CP6 49 51

The �ash crowd to SVR02 starts at around the 50th second. At this moment, the

highest peak of client requests is reached. CP0 is initially involved in the overlay,

then immediately CP6 is invited, but only for 2 sec.

3.8 Concluding Remarks

The most prominent characteristics of FCAN are its dynamic and adaptive orga-

nization and reorganization features of the CDN-like overlay, which, as far as we

know, cannot be found in any other related works. Here, we presented here that

these unique features of FCAN are effective. The intermediate-layer solution using

cache proxies in FCAN is, compared to the client-layer solutions, easier to manage

and control. Moreover, compared to the server-layer solutions, it is more �exible

and closer to clients.

The current design is the �rst version, and it still has some features which need to

be improved. Threshold-based �ash crowd detection should be more sophisticated,

and this will be discussed later. Priority-based proxy grouping is now being replaced

by an autonomous decentralized clustering scheme.

Another issue is the coarse granularity of redirection. A �ash crowd is object-

oriented, while DNS-based redirection is machine-oriented, since DNS deals only

with machine names. It would be preferable to direct only the requests for �ash-

crowd objects to the proxy overlay and to pass other requests for the non-�ash-crowd

objects through, as usual. HTTP-based redirection and URL rewriting techniques

offer �ne-grained object-oriented redirection, however, they are not transparent to

clients.

Quantitative and rigorous evaluations of FCAN are not included in the prelimi-

nary simulations so far. Real implementation on the Internet will be consisting of:

• A specialized Web server with a wrapper module for FCAN functions. Its core

could be Apache for example, and the wrapper would intercept requests to the

core server.

• A specialized cache proxy with a wrapper module for FCAN functions. Its core

could be Squid for example, and the wrapper would intercept requests to the core

proxy.

• An enhanced DNS server. TENBIN is a good candidate, which is actually already

used in practice.



Table 1 Summary of design issues adopted by related systems

Design Issue DD DS ML BS CO CP PF FC

System Archtecture Server-layer
√ √

Proxy-layer
√ √ √ √

Client-layer
√ √

Surrogate Servers Dedicated Servers
√

Existing Servers
√ √

Existing Proxies
√ √ √ √

Existing Clients
√ √ √

Client Transparency Client Unaware
√ √ √

Browser Unchanged
√ √ √ √ √ √

Client Redirection DNS-based
√ √ √ √ √

URL Rewrite
√ √ √ √

HTTP-based
√

Replica Placement Mirror Replica
√ √

Caching on Demand
√ √ √ √ √ √

Object Locating DHT-based P2P
√ √

Unstructured P2P
√ √ √

Cooperative Caching
√

Cache Miss Avoidance Dynamic Delegation
√

Push Service
√

Adaptive Transition Temporary Servers
√

Temporary Proxies
√

Temporary Clients
√

Note. DD: CDN with Dynamic Delegation, ML: Multi-Level Caching, BS: BackSlash, DS: Dot-

Slash, CO: CoralCDN, CP: CoopNet, PF: PROOFS, FC: FCAN.

FCAN was originally designed for �ash crowd protection, but in fact, it is not

only limited to this. It adjusts server load under a prede�ned threshold facing against

any unexpected traf�c surges, and we can thus assume that some kinds of DDoS

attacks could also be handled.

4 Visionary Thoughts for Practitioners

Table 1 summarizes some signi�cant related research efforts (most of them are men-

tioned so far in this chapter) and compares them with FCAN. Our observations are

presented in the following:

1. Over-provisioning based on peak demand or using CDNs to increase server lo-

cations in advance is costly and inef�cient.

2. A client-side P2P overlay addresses �ash crowds reasonably well, but not per-

fectly, since it loses client transparency and controllability.



3. In addition, some P2P systems have overheads, such as the �ooding problem,

which cannot be neglected while facing the ending of �ash crowds.

4. Intermediate-layer solutions have advantages over other layer solutions. This is

because the caching technique is promising in its ability to address �ash crowds

whose target objects are supposed to be small-sized and static.

5. However, most intermediate-layer solutions neglect the problem that more than

60% of objects are uncached at the beginning of a �ash crowd, which results in

the origin server being at risk for a surge of cache misses.

6. Forward proxies rather than servers are better employed as surrogate servers.

Proxies are nearer to clients, and are thus more bene�cial to client response time

and network congestion.

7. To handle �ash crowds �exibly and ef�ciently, an adaptive transition technique

is necessary, which organizes the potential resources along the way, rather than

occupying them all the time.

To sum up, each of the current research works have both merits and demerits.

Through the comparison, we have come to conclude that there is still a lack of

an ef�cient approach that can handle �ash crowds in a �exible, reliable, and cost-

effective manner, while remaining transparent to the end users.

5 Future Research Directions

While there are many research problems required to be addressed in the context of

�ash crowds alleviation, as future research directions, we focus on two main issues.

Early Detection of Flash Crowds We have already noticed the phenomenon that

shortly before a �ash crowd comes to a server, a number of requests sometimes

�oods to DNS servers to resolve the server's name. This must imply that if we had

a technique for collecting the amount of requests from distributed DNS servers and

for analyzing them, we could possibly predict the coming of a �ash crowd, and thus

give an advance warning to the target server.

Handling of Dynamic Objects It must be common to all the CDN systems to

address dynamic object dissemination. Dynamic objects can be divided into two

categories:

• Dynamically generated contents (mostly using script codes and a back-end

database)

• Frequently updated contents (as often found in News sites)

The simplest way would be to replace a dynamic object with its trimmed static

version under a heavily-loaded situation at the cost of its service quality [1].

It must be relatively easy to handle a dynamic object in the former category, if

the back-end database is read-only. If not, or if a dynamic object falls in the latter

category, we must provide a fast and reliable scheme for updating all the replicas

in a consistent manner. This topic, update synchronization and coherence, has been



investigated extensively in the area of distributed databases, distributed caches, and

distributed shared memories. Achievements out of these studies could be applied in

this context.

Finally, some integration among server-layer, intermediate-layer and client-layer

solutions could be interesting and promising.

6 Conclusion

Short-term Internet congestion, known as �ash crowds, poses new challenges for

designing scalable and ef�cient distributed server systems. This chapter analyzed

the major characteristics of �ash crowds, studied the related research works exten-

sively, and pointed out the need for a dynamic network to handle short-term Internet

congestion. Then we presented our original and unique idea of a dynamic CDN

network which adaptively optimizes its own network architecture between C/S and

CDN con�gurations to alleviate �ash crowds. Our observations suggest that FCAN

could be a good basis for performing early detection of �ash crowds, and handling

of dynamic objects. Therefore, we conclude that it could be a pathway to realize

future innovations for handling �ash crowds ef�ciently.

Acknowledgements This chapter is based on joint work with Prof. Toshihiko Shimokawa (Kyushu

Sangyo University, Japan), Dr. Chenyu Pan (China), and Dr. Merdan Atajanov (Turkmenistan). We

also thank Ms. Kate Miller for English proof reading.

References

1. Abdelzaher TF, Bhatti N (1999) Web Server QoS Management by Adaptive Content Delivery.

In: Computer Networks, 31(11�16):1563�1577
2. Adler S (1999) The Slashdot Effect, an Analysis of Three Internet Publications.

http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html
3. Akamai Technologies Inc. http://www.akamai.com
4. Ari I, Hong B,Miller EL, Brandt SA, Long DE (2003)Managing Flash Crowds on the Internet.

In: Proc. 11th IEEE/ACM Int. Symp. on Modeling, Analysis, and Simulation of Comp. and

Telecomm. Sys., 246�249
5. Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T (1999) Evaluating Content Management

Techniques for Web Proxy Caches. In: ACM SIGMETRICS Performance Evaluation Review,

27(4):3�11
6. Arlitt M, Jin T (2000) A Workload Characterization of the 1998 World Cup Web Site. In:

IEEE Network, 14(3):30�37
7. Atajanov M, Shimokawa T, Yoshida N (2007) Autonomic Multi-Server Distribution in Flash

Crowds Alleviation Network. In: Proc. IFIP 3rd Int. Symp. on Network Centric Ubiquitous

Systems (LNCS 4809, Springer), 309�320
8. Barford P, Plonka D (2001) Characteristics of Network Traf�c Flow Anomalies. In: Proc.

ACM SIGCOMM Internet Measurement Workshop, 69�73
9. BitTorrent Website. http://www.bittorrent.com/
10. Breslau L, Cue P, Fan L, Phillips G, Shenker S (1999) Web Caching and Zipf-like Distribu-

tions: Evidence and Implications. In: Proc INFOCOM 1999, 126�134



11. CERT (1996) TCP SYN Flooding and IP Spoo�ng Attacks. Advisory CA-1996-21,

http://www.cert.org/advisories/CA-1996-21.html

12. CERT (1999) Denial of Service Attacks. http://www.cert.org/tech tips/denial of service.html

13. Chandra A, Shenoy P (2003) Effectiveness of Dynamic Resource Allocation for Handling

Internet Flash Crowds. Tech. Report, TR03-37, Dept. of Computer Science, Univ. of Mas-

sachusetts Amherst

14. Chen X, Heidemann J (2002) Flash Crowd Mitigation via an Adaptive Admission Control

Based on Application-Level Measurement. Tech. Report, ISI-TR-557, USC/ISI

15. Cherkasova L, Phaal P (2002) Session-Based Admission Control: A Mechanism for Peak

Load Management of Commercial Web Sites. In: IEEE Trans. on Computers, 51(6):669�685

16. Foster I, Kesselman C, Tuecke S (2001) The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. In: Int. J. of High Performance Computing Applications, 15(3):200�222

17. Freedman MJ, Freudenthal E, Mazieres D (2004) Democratizing Content Publication with

Coral. In: Proc. 1st USENIX/ACM Symp. on Networked Systems Design and Implementation

18. Houle KJ, Weaver GM, Long N, Thomas R (2001) Trends in Denial of Service Attack

Technology. CERT Coordination Center White Paper, http://www.cert.org/archive/pdf/DoS

trends.pdf

19. Iyengar AK, Squillante MS, Zhang L (1999) Analysis and Characterization of Large-Scale

Web Server Access Patterns and Performance. In: World Wide Web, 2(1�2):85�100

20. Joubert P, King R, Neves R, Russinovich M, Tracey J (2001) High-Performance Memory-

Based Web Servers: Kernel and User-Space Performance. In: Proc. USENIX 2001, 175�188

21. Jung J, Krishnamurthy B, Rabinovich M (2002) Flash Crowds and Denial of Service Attacks:

Characterization and Implications for CDNs and Web Sites. In: Proc. 11th Int. World Wide

Web Conf., 252�262

22. Kandula S, Katabi D, Jacob M, Berger A (2005) Botz-4-Sale: Surviving Organized DDoS

Attacks That Mimic Flash Crowds. In: Proc. USENIX 2nd Symp. on Networked Systems

Design and Implementation, 287�300

23. Kong K, Ghosal D (1999) Mitigating Server-Side Congestion in the Internet through Pseu-

doserving. In: IEEE/ACM Trans. on Networking, 7(4):530�544

24. LeFebvre W (2002) CNN.com: Facing a World Crisis. In: USENIX Annual Tech. Conf.,

http://tcsa.org/lisa2001/cnn.txt

25. LimeLight Networks. http://www.limelightnetworks.com/

26. LIVE! ECLIPSE. http://www.live-eclipse.org/index e.html

27. Lorenz S (2000) Is Your Web Site Ready for the Flash Crowd? In: Sun Server Magazine

2000/11, http://www.westwindcos.com/pdf/sunserver 11900.pdf

28. Lyer S, Rowstron A, Druschel P (200) Squirrel: A Decentralized Peer-to-Peer Web Cache. In:

Proc. 21th ACM Symp. on Principles of Distributed Comp., 213�222

29. Moore D (2001) The Spread of the Code-Red Worm (CRv2). http://www.caida.org/analysis/

security/code-red/coderedv2 analysis.xml

30. Nah F (2004) A Study on Tolerable Waiting Time: How Long Are Web Users Willing to Wait?

In: Behaviour and Information Technology, 23(3):153�163

31. Niven L (1973) Flash Crowd. In: The Flight of the Horse, Ballantine Books, 99�164

32. Padmanabhan VN, Sripanidkulchai K. (2002) The Case for Cooperative Networking. In: Proc.

1st Int. Workshop on Peer-to-Peer Systems, 178�190

33. Pan C, Atajanov M, Hossain MB, Shimokawa T, Yoshida N (2006) FCAN: Flash Crowds

Alleviation Network Using Adaptive P2P Overlay of Cache Proxies. In: IEICE Trans. on

Communications, E89-B(4):1119�1126

34. Pan C (2006) Studies on Adaptive Network for Flash Crowds Alleviation. Ph. D. Thesis,

Saitama University

35. Park K, Lee H (2001) On the Effectiveness of Route-Based Packet Filtering for Dis-

tributed DoS Attack Prevention in Power-Law Internets. In: Proc. ACM SIGCOMM 2001,

15�26

36. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A Scalable Content-

Addressable Network. In: Proc. ACM SIGCOMM 2001, 161�172



37. The Ring Server Project. http://ring.aist.go.jp/index.html.en

38. Rowstron A, Druschel P (2001) Storage Management and Caching in PAST, A Large-scale,

Persistent Peer-to-peer Storage Utility. In: Proc. ACM 18th Symp. on Operating Systems Prin-

ciples, 188�201

39. Rubenstein D, Sahu S (2001) An Analysis of a Simple P2P Protocol for Flash Crowd Docu-

ment Retrieval. Tech.Report, EE011109-1, Columbia Univ.

40. Saroiu S (2001) Bottleneck Bandwidths. http://www.cs.washington.edu/homes/tzoompy/

sprobe/webb.htm

41. Shimokawa T, Yoshida N, Ushijima K (2000) Flexible Server Selection Using DNS. In: Proc.

Int.Workshop on Internet 2000, in conjunction with IEEE-CS 20th Int. Conf. on Distributed

Computing Systems, A76�A81

42. Shimokawa T, Yoshida N, Ushijima K (2006) Server Selection Mechanism with Pluggable

Selection Policies. In: Electronics and Communications in Japan, III, 89(8):53�61

43. Sivasubramanian S, Szymaniak M, Pierre G, Steen M (2004) Replication for Web Hosting

Systems. In: ACM Comp. Surveys, 36(3):291�334

44. Stading T, Maniatis P, Baker M (2002) Peer-to-peer Caching Schemes to Address Flash

Crowds. In: Proc. 1st Int. Workshop on Peer-to-Peer Systems, 203�213

45. Stavrou A, Rubenstein D, Sahu S (2004) A Lightweight, Robust P2P System to Handle Flash

Crowds, In: IEEE J. on Selected Areas in Comm., 22(1):6�17

46. Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H (2001) Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications. In: Proc. ACM SIGCOMM 2001,

149�160

47. Wang J (1999) A Survey of Web Caching Schemes for the Internet. In: ACM Comp. Comm.

Review, 29(5):36�46

48. Wang L, Pai V, Peterson L (2002) The Effectiveness of Request Redirection on CDN Robust-

ness. In: ACM Operating Systems Review, 36(SI):345�360

49. Welsh M, Culler D (2003) Adaptive Overload Control for Busy Internet Servers. In: Proc.

USENIX Conf. on Internet Technologies and Systems

50. Zao W, Schulzrinne H (2004) DotSlash: A Self-Con�guring and Scalable Rescue System for

Handling Web Hotspots Effectively. In: Proc. Int. Workshop on Web Caching and Content

Distribution, 1�18

51. Zona Research, Inc.(1999) The Economic Impacts of Unacceptable Web-Site Download

Speeds. White Paper, http://www.webperf.net/info/wp downloadspeed.pdf


