A Transformational Approach to the Derivation
of Hardware Algorithms from Recurrence Equations

Norihiko Yoshida

Department of Computer Science and Communication Engineering
Kyushu University
Hakozaki, Fukuoka 812, JAPAN

Abstract

Hardware algorithms have a significant impact on
the supercomputing of matrix computation and signal
processing. In this paper, we propose a new approach
to the derivation of hardware algorithms from recur-
rence equations, which is based on program transfor-
mation, and we also introduce a new representation for
hardware algorithms, which we call Relational Repre-
sentation. In our approach, we transform one relation-
al program corresponding to a given recurrence egua-
tion (namely a specification) to another relational pro-
gram corresponding to a hardware allgorithm (namely
an implementation). Based on the unfold/fold transfor-
mation method of logic programs, we have formalized
several transformation tactics. We have succeeded in
deriving several implementations of hardware algo-
rithms, such as pipelines, orthogonal grids and trees,
from their respective specifications in recurrence equa-
tions.

1. Introduction

With the advances in VLSI technology and the in-
creasing demands for higher performance, highly par-
allel architectures are now pervasively researched and
developed. In particular, many computations which
were previously implemented in software are going to
be implemented in hardware. Such computations in
special-purpose hardware are often called hardware
algorithms. They have a significant impact on the
supercomputing of matrix computation and signal pro-
cessing. But designing hardware algorithms is still a
very hard job. Some systematic methodology is strong-
ly required for designing both a large collection of fine-
grained process cells connected to each other and the
various operations of each cell.

As for sequential algorithms, several formal tech-
niques have been proposed for designing them system-
atically. Among them, program transformation in par-
ticular is bearing fruitful results. Itis, in its essence, a
technique to transform one program to another equiva-

CH2617-9/88/0000/0433$01.00 © 1988 IEEE

433

lent one. A set of correct transformation rules has been
established, and many transformation tactics have
been formalized.

For our aim at designing hardware algorithms sys-
tematically, we applied a formal technique such as the
above. In this paper, we propose a new approach to the
derivation of hardware algorithms from recurrence
equations, which is based on program transformation.

In order to apply program transformation, we should
have a formal representation of hardware algorithms
which can express both inner-cell operations and cell
configurations in an integrated form. We, therefore, in-
troduce a restricted subset of concurrent logic lan-
guage, which we call Relatiohal Representation. It also
serves as an executable hardware description.

Chapter 2 introduces Relational Representation after

‘briefly reviewing hardware algorithms, and also notes

its translations. Chapter 3 describes program transfor-
mation applied to relational programs, and formalizes
several transformation tactics for deriving hardware
algorithms. Chapter 4 gives an example of the trans-
formational derivation of hardware algorithms. Chap-
ter 5 contains concluding remarks.

2. Relational Representation of
Hardware Algorithms

2.1

First, we specify what we call a hardware algorithm
here. It is a class of highly parallel processor arrays
with the following characteristies :

Hardware Algorithms

A) aregular (recursively-defined) configuration ;
B) local connections of cells by channels ;

C) lock-step synchronization of the whole system ;
D) deterministic operations of cells.

For example, we consider a finite impulse response
(FIR) filter for signal processing defined by the follow-
ing recurrence equation :

Vi = WOXj + WiXj+1 + ..
where w: weight,
X: source sequence, y: drain sequence.

+ Wh-1Xj + k-1

Figure 1 shows its corresponding hardware algorithm
in the case where k is 4, in which a box denotes a cell,
and an arrow denotes a channel. When receiving data,
each cell sends data out after a small duration, which is
called a beat. This pipeline has streams of x's and y's
flowing in the same direction along the channels. Y’s
stream has one more beat of delay per cell, so as to
make it flow at half of x's rate.

A hardware algorithm is usually described in such
an informal manner. Understanding its behavior intu-
itively or formally is difficult, and simulation by hand
is often required. Some systematic techniques for de-
signing hardware algorithms, especially systolic ar-
rays, have been proposed (1, 2, 3, 4], but few are widely
used.

2.2 Relational Representation

In order to apply program transformation to the deri-
vation of hardware algorithms, we should have their
formal representation. It should be able to express
both inner-cell operations and cell configurations in an
integrated form, and be of an inductive nature [5]1. So-
called concurrent logic languages such as Guarded
Horn Clauses [8] and Concurrent Prolog (7] meet these
requirements.

In these languages, a program for a hardware algo-
rithm could be composed of some uniform predicates
with different interpretations. A predicate with proce-
dure interpretation would express an inner-cell opera-
tion, while a predicate with process interpretation
would express a cell configuration with shared varia-
bles for channels to connect cells [8],

As mentioned in Chapter 3, a set of correct transfor-
mation rules has only been established so far for a re-
stricted class of concurrent logic programs, not for the
general class yet. We, therefore, introduce a subset of
concurrent logic languages with the following restric-
tions, and hence call it Relational Representation (or
RR for short) :

A) Specify the input/output mode of arguments ;
B) Allow no nondeterminacy (namely no guard).

These restrictions together mean that a clause to exe-
cute in a predicate is fixed as soon as all its input argu-
ments are instantiated. They do not spoil the ability of

concurrent logic languages to express hardware algo-
rithms.

As for notation, we basically follow a logic language
Prolog [9]. A capitalized symbol denotes a variable, and
“[A|L)” denotes a list, where A and L are its car and cdr
parts respectively. We only modify a notation of claus-
es, in order to specify the mode of arguments, as fol-
lows :

Q. PyiPaii Pi
where Pi, Q = (I1, .., Im)P(O1, .., Op)

In this, Pj (i=1..) and Q denote terms, P is a predicate
symbol, |j (j=1.m) are input arguments and Ok (k=1..n)
are output arguments.

As in concurrent logic languages, a cell is expressed
by a tail-recursive predicate in RR. For example, a cell
p performing an operation f with an input channel XX,
an output channel YY and an internal state transition §
— T (without delay considered here) is expressed as :

(S,IXPXXDp(LYYYD) @2 (S,X)F(T,Y), (T, XX)p(YY).

Conversely, a predicate in RR expresses a cell when
satisfying the following set of conditions (C1) :

A) Itistail-recursive ;
B) Itsevery inputis a list constructor or a variable ;
C) Its every outputis a list constructor,

A configuration of cells is also expressed by a predi-
cate. For example, a pipeline pp of the same cells p
(without delay considered here) is recursively express-
ed as:

(XX}pp(22) :: (XX)p(YY), (YY)pp(22).

2.3 Delay

A relational program has no concept of delay in its es-
sence, while a hardware algorithm utilizes delay in or-
der to control the flow rates of its streams,

In a hardware algorithm, a cell sends outputs at the
next beat after receiving inputs, and the next cell re-
ceives them almost immediately. Now, imagine the
situation where a cell sends outputs immediately upon
receiving inputs, and the next cell receives them at the
next beat. As shown in Figure 2, this consideration
proves that a delay along a channel would be the equi-
valent of a delay in a cell. This means that every chan-

o Xsep Xy X5 —}wo Wi Wa Wi e Xi42 Xj41 Xy
= 0 0 0 —p] e Yisz Yi+t Y
delay delay delay delay
Xin =P S —p Xout = Xin
Yin =bL_ 0 bb Yout = Yin +Wi*Xsp

Figure 1. A Hardware Algorithm of an FIR Filter.

434

nel, instead of every cell, must have one or more beat(s)
of delay.

A beat of channel delay can be expressed by a shift of
a list. For example, a pipeline of cells p and g connect-
ed by a channel YY is expressed, with delay considered,
as:

(OOpa(z2) :: XX)p(YY), ([L]YYDq(Z2).

where “1” denotes the so-called bottom. If any input is
the bottom, a cell bypasses all its inputs to outputs with
no operation. We introduce an operator “+” to denote
this shift of a list :

+XX = [L|XX]

2.4 Translations

‘We can translate a recurrence equation into a rela-
tional program in a straightforward manner, since
both are of an inductive nature. For example, the re-
currence equation defining an FIR filter shown in Sec-
tion 2.1 has another form as follows :

yi0=0
yij+1 - y;j + WXy
A relational program corresponding to it is as follows :
(WW XXi)fir(YYo) :: (WW XXi)pp(YYo). (P1)
(WW,[Xi|XXil)pp([YolYYol) ::
(WW,[Xi|XXi])p(Yo), (WW,XXi)pp(YYo).

{[1.XXi)p(0).
(IW]WWI,IXi|XXi])p(Yo) ::

Delayin a Cell

Cellp Cell g
XX YY . 2
_" L4 —;
X4 J.., 1
Xz Y1 Y1
X3 Y Y
X4 Ya Y3
...... ’
Time delay
¥
Delay along a Channel
WX k YY 2 Z
Xy o
X1 yi 4
Xz Yz Y1
X3 Ya y:
Xa ¥4 Y3
...... +
Time delay

Figure 2. Delay along a Channel instead of in a Cell.

435

(Ww XXi)p(Ya), (W, Xi,Ya)f(Yo).
(W,.LYDf(Yi).
(W, Xi, L)F(L).
(W, Xi,YD)f(Yo) :: (W, Xi)*(Yb), (Yi,¥b) + (Yo).

In this, WW, XX and YY express the sequences of w's,
X's and y's respectively. P expresses the recurrence
equation itself, while pp expresses x's and y’s progres-
sion according to the suffix i,

We can also translate a hardware algorithm into a
relational program in a straightforward manner, as
shown in the previous sections. A relational program
corresponding to the hardware algorithm of an FIR fil-
ter is as follows :

(WW X Fir(YYo) ::

{(WW ,XXi,[0,0,..1)pp(__.YYo).
([1,XXi,YYi)pp(XXi,YYi).
(IWWW1 XX, YYi)pp(XXo,YYo) ::

(W,XXi,YYi)p(XXa,YYa),

(WW, + XXa, + + YYa)pp(XXo,YYo).
(W, DXLl Y Yilp([Xi[XXe],[YolYYo]) ::

(W, Xi,YDf(Yo), (W, XXi,YYi}p(XXo,YYo0).
(W, L, Yi(Yi).

(W, X0, L)f(L).
(W, Xi,YD(Yo) :: (W, XD*{Yb), (Yi,Yb) + (Yo).

(P2)

In this, p expresses each cell, while pp expresses the
cell configuration.

Lastly, we can translate a relational program easily
into a concurrent logic program, since RR is a restricted
subset of concurrent logic language. By executing a
translated program, we could simulate the behavior of
a hardware algorithm.

3. Transformation of Relational
Programs

3.1

Program transformation is a technique to transform
one program to another equivalent one [10, 111, For
logie programs, the unfold/fold transformation method
has been established [12]. It transforms a program by
combining very primitive rules including unfold and
fold :

Unfold: A::B,C,D. C::E,F.
Fold :

Program Transformation

— A B,E FD.
A::B,EFD.Ci:E,F. > A::B,C,D.

The unfold/fold transformation is correct (semantics-
preserving) for concurrent logic programs which imply
well-formed causalities and do not have so-called don 't
care nondeterminacy (18], RR is a restricted subset of
concurrent logic language so as to specify causalities
(by the mode of arguments) and not to allow nondeter-
minacy. We, therefore, can apply the unfold/fold trans-
formation for logic programs to relational programs

with no modification, if we are careful with their cau-
salities.

We transform a program with a sequential (stepwise)
combination of rules. In order to apply program trans-
formation to practical problems, we should structure
transformation sequences. This is done by formalizing
transformation tactics (14]. Each tactic is a specific
combination of primitive rules like a macro. By for-
malizing tactics, we can transform a program with
more specific and abstract tactics, instead of primitive
minute rules. In this case, primitive rules serve as axi-
oms for proving the correctness of the tactics.

The assorted tactics for the transformational deriva-
tion of hardware algorithms are of three types : for de-
riving cell configurations, for cascading channels, and
for introducing delay. Here, we show some typical tac-
tics, using a form of “initial program schema — final
program schema”. The outline of their correctness
proofs based on the primitive unfold/fold rules are
found elsewhere [15],

3.2 Tactics for Deriving Cell
Configurations

The essence of a tactic for deriving a cell configura-
tion is mapping an inner-cell operation in the initial
program onto a cell configuration in the final program.
Practically, this mapping is done by making a more in-
ner (or lower) predicate express a cell, as shown below :

1) Tactics for Deriving Pipelines

The simplest pipeline is composed of two consecutive
cells. A tactic for deriving it is as follows :
(IXPOX)PP([2|122]) 2 (X)FF(Z), (XX)PP(ZZ).
(X)FF(2) :: (X)F1(Y), (Y)F2(2).
l (m1)
(XX)PP(ZZ) :: OOOPI(YY), (YY)P2(Z2).
(IXPONPILYIYYD) = (XIF1CY), (XX)PI(YY).
(IYIYYDP2([Z|ZZ]) :: (Y)F2(Z), (YY)P2(ZZ).

In this, XX and ZZ are input and output channels res-
pectively. In the initial program, PP expresses a cell,
since it satisfies the condition set C1 shown in Section
2.2. FF expresses an inner-cell operation composed of F1

Cell PP

}b
¥ T

CellP1 CellP2
»oro¥ FihoyF2poros

+OFOP O»O»

Figure 3. Derivation of a Simple Pipeline.

436

and F2. In the final program, P1 and P2 express cells,
since they satisfy C1. PP expresses a cell configuration
as a pipeline of P1 and P2 with an intermediate channel
YY. The sequence of F1 and F2 in the initial program is
mapped onto the pipeline of P1 and P2 in the final
program, Figure 3 shows this transformation. T1is the
converse of the loop fusion (or the combining) tactic [14]
or the process fusion [13],

We can easily generalize T1 to the derivation of pipe-
lines of more than two cells, and moreover recursive
pipelines as follows :

([X[XX])PP([Z|ZZ]) 2 (X)FF(2), OXX)PP(ZZ).
(X)FF(2) :: (XIF(Y), (Y)FF(Z).

i) (T2)
(XX)PP(ZZ) :: (XX)P(YY), (YY)PP(ZZ).
(IXIXXDP(IY]YY]) =2 (XIF(Y), (XX)P(YY).

2) Tactics for Deriving Parallelisms

The simplest parallelism is composed of two adjacent
cells. A tactic for deriving it is as follows :

(IXs|XX]PP([Zs|22]) :: (Xs)FF(Zs), (XX)PP(ZZ).
([X1,X21)FF([21,22]) :: (X1)F1(21), (X2)F2(Z2).
(T3)

(XX)PP(22) ::

(OOO(XXs), (XXS)PP'(Z22Zs), (ZZs)t(ZZ).
([XX1,XX2])PP'([221,222]) ::

(XX1)P1(ZZ1), (XX2)P2(ZZ2).
(IXXXDP([Z]22]) :: (XF1(2), (XXP1(2Z).
(DXXXDP2([Z|ZZ]) :: (X)F2(Z), (XX)P2(ZZ).

where the predicate t is to transpose a list of lists as :
([[1,21.[3,41,5.6],..Dt([[1,3,5,..1,[2,4,6,.]1])

In the initial program, the cell which PP expresses ope-
rates on a stream of paired items. In the final program,
the stream is separated into two, and the cells P1 and
P2 operate on each of them. PP' expresses the configu-
ration as their parallelism. Figure 4 shows this trans-
formation.

Cell PP
ré\ :rC")\
fo)igle)
* T3

Cell P1

090 HFO)O)
Cell P2

»>O%OH F2|»o+o+

[0\, 10}

P P E}

Figure 4. Derivation of a Simple Parallelism.

We can easily generalize T3 to the derivation of par-
allelisms of more than two cells, and moreover recur-
sive parallelisms as follows :

(IXs]XXDPP([Zs]2Z]) :: (Xs)FF(Zs), (XX)PP(22).
(IX|XsDFF([Z|Zs]) :: (X)F(Z), (Xs)FF(Zs).
4 (T4)

(XX)PP(22) ::

DOOLOO(s), (XXs)PP'(2Zs), (ZZs)t(Z22Z).
([DXXXXs])PP'([22]225]) ::

(XX)P(2Z), (XXs)PP'(2Zs).
([XIXX])P([Z]ZZ]) 2 (XF(Z), XX)P(Z22).

3) Tactics for Deriving Trees

The base method for deriving a tree of cells is called
the recursive doubling (16, 10], which introduce a bi-
linear recursion as follows :

([Xs|XX1)PP([2|ZZ]) :: (Xs)FF(Z), (XX)PP(ZZ).
([DFE(E). % E is the identity of F.
(IX|XS])FF(Z) :: (Xs)FF(Y), (X)G(X"), (X",Y)F(2).
(T5)
(XX)PP(ZZ) :: (XX)t(XXs), (XXs)PP'(Z2).
(XXNPP'(Z2Z) :: (XX)P'(Z22).
(IXXs1@XXs2])PP'(Z2) ::
(XXs1)PP'(YY1), (XXs2)PP'(YY2),
(YY1,YY2)P(Z2Z).
([XIXX])P'([Z|ZZ]) 1 OG(Z), (XX)P'(22).
(OY1|YY1],IY2]YY2)P([2|22) ::
(Y1,Y2)F(2), (YY1,YY2)P(22).

where the operator “[@]” is to divide a list into two as:
[1,2,3,4,56] = [[1,2,3]@[4,5,6]]

T5 is applicable only if F is associative. Figure 5 shows
this transformation.

)o»o
»O»OY |

: Thoror
»0O%0

Figure 5. Derivation of a Tree.

3.3 Tactics for Cascading Channels

One of the tactics for cascading channels transforms
outflow channels to cascade ones. This is exactly the
same as the recursion removal (17] for sequential pro-
grams. Itis as follows :

((DP(E).

(IXXXDP(Z) 2 (XX)P(Z'), (X,Z')F(Z).
¥ (T6)

(X)P(2Z) :: (X,E)P'(Z).

([1.2)P'(2).

(IX[XX],2)P'(Z") =2 (Z)F(Z"), (XX Z')PH(Z™).

T6 is applicable only if F is associative.

The other transforms branch channels to cascade
ones. Itis as follows :

.., DOOP10), OOXP20), ...
(IXPXP10 < ODF1(), (XX)P1().

(T7)
w DOOPTOOKY), (XXP2'(XX™), ..
(IXPXXDP 1 (IXXXT) =2 (XF1(), (XX)P1'(XX).

Figure 6 shows these two transformations.

3.4 Tactics for Introducing Delay

A cell with the same amount of additional delay
along every input and output channel is equivalent to
the original cell. Namely, the following transforma-
tion is correct :

Cell P

l»o&o*
$ 76

Cell P

[poros

(a) Cascading an Outflow Channel.

»Org—
o))
i \»

CellP1 Cell P2

$ 77

Cell P2
4}0»0»

(b) Cascading a Branch Channel.

$0O» 0O

F1

Cell P1
»OPOH F"]oo#

Figure 6. Tactics for Cascading Channels.

437

(SII1;---yim)P(o1r“-r0n)

l
(S, +11,eey +1m)P(+ O1,..., + Op)

We, hereafter, make an assumption that we may ig-
nore delay (or “+" operators) on the last output chan-
nel. Then, for example, the following tactics for recur-
sive cell pipelines are correct :

(OOPP(ZZ) 2 (XX)P(YY), (YY)PP(ZZ).
(T8)
(OOPP(ZZ) :: (XX)PYY), (+ YY)PP(22).

(OOQPP(ZZ) 1 (YY)P(ZZ), (XX)PP(YY).
J« (T9)
(XX)PP(ZZ) :: (YY)P(Z2Z), (+ XX)PP(+ YY).

In these, a beat of additional delay is put along the
arguments of PP. A “+” on ZZ, which is the last output
channel in T8, is omitted. Figure 7 shows these two
transformations, where “~” denotes the inverse of “+7.
A transformation sequence should end with these tac-
tics so that every channel is arranged to have one or
more beat(s) of delay.

3.5 Transformation Strategy

‘We should have a transformation strategy to decide
how to combine transformation tactics. Some channel-
cascading tactics should be applied before configura-
tion-deriving ones, the other channel-cascading ones
should be applied afterwards, and delay-introducing
ones should be applied last. In the case where several
configuration-deriving tactics are applicable to a given
program, we should transform its predicates in the or-

P et e
§ 78
Cell PP

o CellPP < el B
N e I
Seg i SRR W oo
¥ 19
N L ——

Figure 7. Tactics for Introducing Delay.

der “from outer to inner”. In the case where several
transformation sequences are applicable to a given pro-
gram, we should select one following a certain criteri-
on.

4. Derivation Example of Hardware
Algorithms

Transformational derivation of 2 hardware algo-
rithm is to transform one relational program corre-
sponding to a given recurrence equation (namely a spe-
cification) to another relational program corresponding
to a hardware algorithms (namely an irmplementation).
‘We describe, using a simple example, the concrete deri-
vation of hardware algorithms, especially to show how
transformation sequences are composed of the tactics
shown above.

The relational program P1 shown in Section 2.4 is the
one translated from the recurrence equation defining
an FIR filter. In this, pp satisfies the condition set C1,
which means that pp expresses a cell, while p expresses

an inner-cell operation. This system is composed of one
cell.

@ First, apply a channel-cascading tactic to p so as
to transform it to a tail-recursive predicate :

(WW,XXIFir(YYo) :: (WW,XXi,[0,0,..])pp1(YYo).

(WWLIXPOGLL LYY YiDpp 1([YolYYo))
(WW,[Xi|XXi],Yi)p1(Yo),
(WW,XXi,YYi)pp1(YYo).

(11X, Yi)p 1(Yi).

([W]WW],[Xi|XXi],Yi)p1(Yo) ::
(W, X1, Yi)f(Ya), (WW XXi,Ya)p1(Yo).

@ Apply a pipeline-deriving tactic to pp1 and p1:

(WW, XXi)fir(YYo) :: (WW,XXi,[0,0,..)pp2(YYo).

([1,XXi,YYi)pp2(YYi).

([WIWW],IXI[XXi], YYi)pp2(YYo) ::
(W,[Xi|XXi],YYi)p2(YYa),
(WW,XXi,YYa)pp2(YYo).

(W, IXiIpXXILIYi|YYil)p2([YolYYo]) ::

(W, X1, YDf(Yo), (W, XXi,YYi)p2(YYo).

3 Now, the innermost predicate p satisfies C1,
which means that no more configuration-deriving
tactics can be applied. Therefore, apply a channel-
cascading tactic to pp2 so as to transform XX to a cas-
cade channel :

(WW, XXi)fir(YYo) :: (WW,XXi,[0,0,..1)pp3(__YYo).
([LXX0, YYD pp3(XXi,YYi).
([W]WW],[Xi[XXil,YYi)pp3([Xi|XXe],YYo0) ::
(W, XXX YY) p3([Xi|XXa), YYa),
(WW,XXa,YYa)pp3(XXo,YYo).
(W, [XIXXi1,[Yi] Y Yil) p3([Xi]XXo],[Yo|YYo]) ::
(W, Xi,Yi)f(Yo), (W, XXi,YYi)p3(XXe,YYo).

438

@ Lastly, apply a delay-introducing tactic to pp3 so
as to make channels XX and YY have one or more
beat(s) of delay (XXo and YYo are the last output
channels, so "+ ™s along them are omitted) :

(WW XX ir(YYo) @ {WW,X)(i,[O,U,..])pp4(__,YYo).
(1,1, YY) ppa(XXi, YYi).
(IW|WW],XXi, YYi)ppa(XXo,YYo) ::
(W, XXi,YYi)p4(XXa,YYa),
(WW,XXa, + YYa)ppa{XXo0,YYo).
(W, IXG[XXIL, [YI[Y Yil) p4([Xi]XXol,[Yo| YYol) ::
(W Xi,Yf(Yo), (W XXi,YYi)pd(XXo,YY0).

Again applying a delay-introducing tactic to pp4, we
get exactly the same relational program as P2 shown
in Section 2.4. It can be translated into a hardware
algorithm of an FIR filter.

Figure 8 shows the transition of the FIR filter system
along the transformational derivation shown above.

We show another derivation example only as a sche-
matic diagram. Figure 9 shows the transition of a mat-
rix-vector product system along the transformational
derivation. This is a case where some transformation
procedures are applicable, in which the former tree is
faster than the latter pipeline, while the latter is more
compact.

5. Conclusions

In this paper, we proposed a new approach to the
derivation of hardware algorithms from recurrence
equations, which is based on program transformation.

IE

W

3

| 5

W

pp

¥
x4

%

XX X

o
o

00 p Y

Figure 8. Derivation of an FIR Filter System.

439

We also introduced a new representation for hardware
algorithms, which we call Relational Representation.

Relational Representation is a subset of concurrent
logic language, since a set of transformation rules has
only been established so far for a restricted class of con-
current logic programs. It has two eminent character-
isties. One is that it can express both inner-cell opera-
tions and cell configurations in an integrated form.
The other is that a program in it can be easily translat-
ed into a concurrent logic program, and we could simu-
late the behavior of a hardware algorithm by executing
the translated one on some concurrent logic program-
ming system.

Transformational derivation of a hardware algo-
rithm is to transform one relational program corre-
sponding to a given recurrence equation (namely a spe-
cification) to another relational program corresponding
to a hardware algorithm (namely an implementation).
In our approach, formalizing tactics promotes well-
formed organization and easy augmentation of the
derivation technique.

We have succeeded in deriving several implementa-
tions of hardware algorithms from their respective spe-
cifications in recurrence equations. Besides the ones
shown as examples, we have derived orthogonal grids,
but not hexagonal grids yet. There is one open prob-
lem. If an outcome relational program can not corre-
spond to any implementation, either its specification or
its transformation sequence is not good. But we can not
now say which is the case, since we have not yet com-
pleted the transformational derivation technique.

—

'4

—

)

L 4

o Ll
—[Pl b bl

B i

Figure 9. Derivation of a Matrix-Vector Product
System.

It is worth to note that this work has a close relation-
ship to stream programming in functional languages
(18, 19, 20, 21], since both use, as their bases, stream in-
terpretation of lists with lazy evaluation.

Hardware algorithms have a significant impact on
the supercomputing of matrix computation and signal
processing. We believe that this work has proved that
the transformational derivation of hardware algo-
rithms is indeed promising.

Acknowledgment

The author would like to thank Professor Kazuo
Ushijima and Professor Shinji Tomita of Kyushu Uni-
versity for their valuable support and encouragement,
and also thank Doctor Jiro Tanaka of Fujitsu Ltd. for
his advice concerning stream programming.

References

[1] Moldovan,D.I., “On the Design of Algorithms for VLSI
Systolic Arrays”, Proc. IEEE 71:1 (1983) 113-120.

[2] Li,G.-J. and Wah,B.W., “The Design of Optimal Systolic
Arrays”, IEEE Trans, C-34:1 (1985) 66-77.

[3] Lam,M.S. and Mostow,J., “A Transformational Model of
VLSI Systelic Design”, IEEE Comp. 18:2 (1985) 42-52.

[4] Huang,C.-H. and Lengauer,C., “The Derivation of Systolic
Implementations of Programs”, Acta Inf. 24 (1987) 595-632.

[5] Hoare,C.A.R., Communicating Sequential Processes, Pren-
fice-Hall (1985).

[6] Ueda,K., Guarded Horn Clauses, MIT Press (1988).

[7) Shapiro,E.Y., “Concurrent Prolog : A Progress Report”,
IEEE Comp. 19: 8 (1986) 44-58.

[8] Shapiro,E.Y., “A Subset of Concurrent Prolog and Its
Interpreter”, Tech. Report TR003, ICOT (1983).

[9] Clocksin,W.F. and Mellish,C.S., Programming in PRO-
LOG, Springer-Verlag (1981).

[10] Darlington,J., “Program Transformation”, Functional Pro-
gramming and Its Application (Darlington,d. et.al. eds.),
Cambridge Univ. Press (1982) 193-215.

[11] Bird, R.8., “Tabulation Techniques for Recursive Pro-
grams”, ACM Comp. Surv. 12:4 (1980) 403-417,

[12] Tamaki,H. and Sato,T., “Unfold/Fold Transformation of
Logic Programs”, Proc. 2nd Logic Programming Conf.,
Uppsala (1984) 127-138,

[13] Furukawa,K. and Ueda,K., “GHC Process Fusion by Pro-
gram Transformation”, Proc. 2nd Japan Soc. Soft. Sci. and
Tech. Conf., Tokyo (1985) 89-92.

[14] Feather,M.S., “A System for Assisting Program Transfor-
mation”, ACM Trans. Prog. Lang. Syst. 4:1 (1982) 1-20.

[15]

(16])

17

[18)

[19]

[20]

[21]

Yoshida,N., “Transformational Derivation of Highly Par-
allel Programs”, Proe. 3rd Int. Conf. on Supercomputing 3,
Boston (1988) 445-454.,

Kogge,P.M. and Stone,H.S., “A Parallel Algorithm for the
Efficient Solution of a General Class of Recurrence Equa-
tions"”, IEEE Trans. C-22:8 (1973) 786-793.

Huet,G. and Lang,B., “Proving and Applying Program
Transformation Expressed with Second-Order Patterns”,
Acta Inf. 11 (1978) 31-55.

Ida,T. and Tanaka,J., “Functional Programming with
Streams”, Proc. IFIP '83, Paris (1983) 265-270.

Ida,T. and Tanaka,J., “Functional Programming with
Streams - Part II-”, New Generation Computing 2:3 (Ohm-
sha, JAPAN) (1984) 261-275.

Wadler,P., “Applicative Style of Programming, Program
transformation and List Operators”, Proc. 1981 Conf. on
Functional Programming Languages and Computer Archi-
tecture, Portsmouth (New Hampshire) (1881) 25-32.

Kieburtz,R.B. and Shultis,J., “Transformation of FP Pro-
gram Schemes”, ibid. 41-48,

