
Transformational Derivation of Higher-Order Process Compositions

Norihiko Yoshida
Department of Computer and Information Sciences,

Nagasaki University, Nagasaki 852-8521, Japan
E-mail: yoshida@cis.nagasaki-u.ac.jp

We present the current status of our research on a higher-order abstraction frame-
work for process compositions and transformational derivation in functional pro-
gramming. The aim is to aid formal treatment of system-level design for highly-
parallel systems and, in particular, VLSI architectures. Starting from a well-
known technique for higher-order abstraction of process compostions, we investi-
gate higher-order abstraction of compostion transformation rules, which abstracts
out concrete compostions. This abstract transformation is regarded as transfor-
mation of interpreters, which is meta-level transformation. We mention our inves-
tigation towards monad-based interpretater transformation.

1 Introduction

Generally speaking, application systems are implemented in one of the forms
of: (1) custom software on general-purpose hardware, (2) custom software on
custom hardware, or (3) custom hardware. Software design and hardware
design have been separated, and most design technologies have focused their
attentions on (1) or (3). Today, recent advance of VLSI design technologies is
facilitating (2) especially for embedded systems.

“Hardware/software design” is ne approach towards designing hardware-
software-mixed systems. In this framework, hardware and software in a system
are designed in a cooperative manner, however they are designed still separate-
ly. There has emerged a more revolutionary approach, system-level design, in
which hardware and software are designed in an unified and integrated man-
ner 1. In other words, system-level design focuses its attention to early stages
in a design process where a system is abstract before getting separated into
hardware and software.

Towards the system-level design, our research is aiming at system-level
evolution a. This term follows “software evolution” which is vigorously in-
vestigated in a joint research project funded by the Ministry of Education in
Japan. In software evolution, a system is first specified in a very abstract form
such as a mathematical equation, and then an concrete implementation is (or
possibly more than one are) derived using formal rules from this specification.
At several stages in this design process, pre-defined components of various ab-
straction levels may be utilized and included. System-level evolution inherits
the same framework in principle, however differs in that the outcome is not

1

necessarily only software, but possibly also hardware or hardware+software.
One of the most crucial in such a design technique is abstraction. There

are already abstraction schemes for system components. Abstraction of system
compositions (or system topologies) is vigorously investigated in such studies
as “Skeletons” by Cole, Kelly, Darlington and many other researchers 3, and
“Software Architecture” proposed in Software Engineering. This abstraction is
to enable us to build libraries of compositions as reusable “meta-components.”

Our research is trying to go further. Formal rules for system derivation
(or system evolution) should be abstracted as well, so that we build libraries
of derivation rules and procedures. Also, this abstraction is supposed to aid
invention or investigation of the rules and procedures. This paper presents the
current status of our research.

Abstraction of a process composition yields a higher-order abstract pro-
cess. It specifies connections and relations of first-order component processes.
Abstraction of a composition derivation rule yield a yet higher-order abstract
process. It specifies a relation between a given composition and a derived com-
position. To realize and represent this hierarchy of higher-order abstractions,
we use functional programming b.

The targets of our design technique are parallel systems made of perpetual
processes working on data streams, which are repetitive, synchronous, and
deterministic (Nondeterministic concurrent systems are out of our concern).
Similar systems have also been studied as “reactive systems” 4. There are
some programming languages for them named “synchronous languages” 5,6,
and in particular, “Lucid Synchrone” is actually a functional programming
language 7. However, formal derivation of reactive systems has not been well
investigated yet.

Our approach is also relevant to the researches of “Ruby” 8 and “Lava” 9

on VLSI hardware design using functional programming. Lava uses monads
to switch program manipulation among simulation, verification and logic syn-
thesis, however the detail of Lava monads has not been presented as far as we
know. We focus more on system-level design.

Section 2 summarizes some basic (well-known) definitions which will be
used in further discussions. Section 3 describes derivation of compositions, or
system-level evolution, including an example. Then, Section 4 presents our
trial towards abstraction of derivation rules using monads. Section 5 contains

aThere is a research topic of a similar term, “evolvable hardware”, which studies probabilistic
optimization of hardware systems 2. A typical example is hardware design using genetic
algorithms. This topic is out of our concern here.
bPrograms are presented in Gofer (Actually, we use MacGofer developed by Dr. Kevin
Hammond).

2

some concluding remarks.

2 Basic Definitions

Perpetual Process

A perpetual process is a fixed point in system state transition. A process
applying a function f to a stream argument xs is defined in the form of a
recursive function as:

proc f (x : xs) = f x : proc f xs

or just simply
proc :: (a -> b) -> [a] -> [b]
proc = map

Pipeline Composition of Processes

A pipeline of two processes p and q connected by a stream channel is repre-
sented as q (p xs). We introduce a pipeline operator >>:

infix 3 >>
(p >> q) xs = q (p xs)

and a pipeline function pipe for a list of processes as:
pipe :: [a -> a] -> a -> a
pipe = foldr (>>) id

This definition is essentially the same as the one in Skeletons.

Parallel Composition of Processes

A function para which represents a parallel composition of processes (possibly
identical in a SIMD style) to a bunch of streams is defined as:

para :: [a -> b] -> [a] -> [b]
para = curry ((map eval) . zip2)

zip2 (s1, s2) = zip s1 s2

The pipeline and parallel compositions are the two most primary ones.
More complex compositions such as a bidirectional pipeline and an orthogonal
grid are defined using these. Other compositions include such as a binary tree
and a hexagonal grid. Our investigation to formalize them in higher-order
abstraction are found elsewhere 10.

Regarding formal treatment of our framework, O’Donnell’s Parallel Ab-
stract Machine (PAM) 11 has a motivation similar to ours, and can be a good

3

basis. To apply PAM to our framework, PAM should be extended with stream-
based data-flow computation. “Synchronous Automata”12, originally proposed
for synchronous languages, is used for this extension.

3 Transformation of Compositions

Transformational derivation from (mathematical) specifications is one of the
most promising approach to formal system-level design.

We already achieved some formal derivation of highly-parallel systems and
VLSI architectures based on transformation of process compositions 13. Below
is an example (The original version was presented in a logic programming
language). This is an outline of derivation of an hardware algorithm, or a
systolic array, for a finite impulse response filter defined as:

yi =
k−1∑

j=0

wjxi+j

where wj , xi, yi are weights, an input sequence, an output sequence respec-
tively. This recurrence equation is mapped on the below program (A), where
pp is interpreted as a process.

fir ws xs = pp ws xs [0,0..]
pp ws (x : xs) (y : ys) = p ws (x : xs) y : pp ws xs ys
p [] xs y = y
p (w : ws) (x : xs) y = p ws xs (f w x y)

It is transformed to program (B):
fir ws xs = pp ws xs [0,0..]
pp [] xs ys = ys
pp (w : ws) (x : xs) ys = pp ws xs (p w (x : xs) ys)
p w (x : xs) (y : ys) = f w x y : p w xs ys

and then to program (C), where p is interpreted as a process, and pp is inter-
preted as a pipeline.

fir ws xs = ys’ where (_, ys’) = pp ws xs [0,0..]
pp [] xs ys = (xs, ys)
pp (w : ws) xs ys = pp ws xs’ ys’

where (_ : xs’ ys’) = p w xs ys
p w (x : xs) (y : ys) = (x : xs’, f w x y : ys’)

where (xs’, ys’) = p w xs ys

This transformation is illustrated in Fig. 1.
The principle behind the technique is to decompose a single complex pro-

cess into a composition of some simple processes. A pipeline composition is

4

Program (A) xs

ys

Program (B)

pp

ws

w0 w1 w2 w3

p p p p

xs

ys

w0 w1 w2 w3

p p p pxs

ys

Program (C)

Figure 1: Transforamtional Derivation of Systolic Array.

derived from a single process applying functions consecutively. Likewise, an
SIMD composition is derived from a single process applying a set of functions
to a bunch of streams.

Now we investigate higher-order abstraction of transformation rules based
on the higher-order abstraction of compositions. The transformation rule to
derive a pipeline composition is specified using program templates:

proc_seq fs xs = proc (seq fs) xs
seq [] x = x
seq (f : fs) x = seq fs (f x)

↓
pipe_proc [] xs = xs
pipe_proc (f : fs) xs = pipe_proc fs (proc f xs)

Here, seq is identical to pipe, and this rule is abstracted as:

proc_seq :: [a -> a] -> [a] -> [a]
proc_seq = (proc . pipe)

↓
pipe_proc :: [a -> a] -> [a] -> [a]
pipe_proc = (pipe . map proc)

5

The correctness of this rule is shown in an inductive manner as follows.
We assume that:

pipe (map proc fs) xs == proc (seq fs) xs

and show:

pipe (map proc fs) (x : xs) == proc (seq fs) (x: xs)

as follows (-- indicates a comment):

pipe (map proc [f1, f2, ..., fn]) (x : xs)
== pipe [proc f1, proc f2, ..., proc fn] (x : xs)

-- unfold map
== proc fn (... (proc f2 (proc f1 (x : xs))))

-- unfold pipe
== proc fn (... (proc f2 (f1 x : proc f1 xs)))

-- unfold the innermost proc
== proc fn (... (f2 (f1 x) : proc f2 (proc f1 xs)))

-- once more
== ...
== fn (... (f2 (f1 x))) :

proc fn (... (proc f2 (proc f1 xs)))
== seq [f1, f2, ..., fn] x :

pipe [proc f1, proc f2, ..., proc fn] xs
-- fold seq and pipe

== seq [f1, f2, ..., fn] x :
pipe (map proc [f1, f2, ..., fn]]) xs

-- fold map
== seq [f1, f2, ..., fn] x :

proc (seq [f1, f2, ..., fn]) xs
-- apply the assumption

== proc (seq [f1, f2, ..., fn]) (x : xs)
-- fold proc

The transformation rule to derive an SIMD composition is specified as:

proc_resp fs xss = proc (resp fs) xss
resp [] [] = []
resp (f : fs) (x : xs) = f x : resp fs xs

↓
para_proc [] [] = []
para_proc (f : fs) (xs : xss) =

proc f xs : para_proc fs xss
This rule is abstracted as:

6

proc_resp :: [a -> b] -> [[a]] -> [[b]]
proc_resp = (proc . para)

↓
para_proc :: [a -> b] -> [[a]] -> [[b]]
para_proc = transpose /| (para . map proc) |/ transpose

infix 2 |/
infix 1 /|
(f |/ g) x y = f x (g y)
(f /| g) x y = f (g x y)

Inductively, we have an insight that (at least, some) rules for composition
derivation can be generalized and abstracted using a composition variable z
as:

proc_comp :: (a -> b -> c) -> a -> [b] -> [c]
proc_comp = \z -> (proc . z) -- (D)

↓
comp_proc :: ([[a] -> [b]] -> c) -> [a -> b] -> c
comp_proc = \z -> (z . map proc) -- (E)

where “\<pat> -> <expr>” is a lambda expression.
This looks natural also from the intuitive standpoint of view in that a pro-

cess of a composition of functions is transformed to a composition of processes.
We can invent a new composition-derivation rule by assigning a composition
to z. The generality of this highly abstracted transformation rule is being
investigated.

4 Towards Monad-based Interpretation

Now the composition is abstracted out as a higher-order variable from the
transformation rules. Provided a value (actually a composition) for this vari-
able, The above program (D) yields a process containing the composition, and
(E) yields a composition of processes which is equivalent to (D). The trans-
formation is specified regardless of the value of the variable. This scheme can
be formalized also as that we have two interpreters for a composition, each of
which corresponds to (D) and (E) respectively, and the transformation is spec-
ified as transformation of the interpreters. This transformation of interpreters
is considered as a meta-level transformation, as the composition which they
interpret is at the base-level.

In order to build a framework for interpreter transformation, or meta-level
transformation, we are investigating an applicability of “monads” 14. Monads

7

are category-theoretic constructs that allows a program to manipulate com-
putations as values, which is a kind of reflection, or meta-level computation.
Monads are to use introduce, for example, states, I/O’s, continuations, con-
currencies, nondeterminism, and so on to purely functional programming.

In a (possible) monad-based framework, we will define two composition
monads, S and C, such that, given a composition z, for example pipe or para,
its interpretation under the monad S yields a single process of the composition
of functions, while the interpretation under the monad C yields the composition
of processes. The transformation will be specified as transformation from the
monad S to the monad C.

Towards this target, we are investigating in particular the monadic imper-
ative streams 15 and the vectorisation monads 16. The former introduces an
stream extension to I/O monads; the latter investigates transformation from
an imperative for loop to purely functional fold, map and scan. An inverse
of this transformation will help to build an monadic interpreter for our frame-
work.

5 Concluding Remarks

We presented a higher-order abstraction framework for process compositions
and their transformational derivation rules in functional programming. It is to
aid reuse and formal design in system-level design of highly-parallel systems
and VLSI architecture.

As the readers can easily seen, we are still at the starting point of our
research. Monad-based interpretation for this framework is our ongoing task.
The next crucial issue to address is, from the system-level design standpoint
of view, criterions on when and where to separate hardware and software.

Acknowledgments

We are grateful to Dr. Kevin Hammond and Dr. Phil Trinder for their helpful
comments and suggestions at the Workshop. This research is partly supported
by a joint research project on “Software Evolution” funded by the Ministry of
Education in Japan.

References

1. http://www.intermetrics.com/SLDL/
2. http://www.etl.go.jp/~ehw/
3. http://www.dcs.ed.ac.uk/home/mic/skeletons.html

8

4. N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer
(1993)

5. G. Berry, “The Foundations of Esterel”, Proof, Language and Interaction:
Essays in Honour of Robin Milner (G. Plotkin, C. Stirling and M. Tofte,
eds), MIT Press (1998)

6. N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, “The Synchronous
Dataflow Programming Language Lustre”, Proc. IEEE, 79:9 (1991)

7. http://www-spi.lip6.fr/softs/lucid-synchrone.html/
8. G. Jones and M. Sheeran, “Circuit Design in Ruby”, in Formal Methods

for VLSI Design (J. Staunstrup ed.), Elsevier, 13-70 (1990)
9. P. Bjesse, K. Claessen, M. Sheeran and S. Singh, “Lava: Hardware Design

in Haskell”, Proc. ICFP’98 (1998)
10. N. Yoshida, “Higher-Order Abstraction of Process Compositions and

Their Transformation”, Reports of the Faculty of Engineering, Nagasaki
Univ., 29:52, 67-71 (1999)

11. J. O’Donnell and G. Runger, “A Methodology for Deriving Parallel Pro-
grams with a Family of Parallel Abstract Machines”, Proc. 3rd Int’l
Euro-Par Conf., 662-669 (1997)

12. O. Maffeis and A. Poigne, “Synchronous Automata for Reactive, Real-
Time or Embedded Systems”, Technical Report No. 967, German Na-
tional Research Center in Information Technology (GMD) (1996)

13. N. Yoshida, “Transformational Derivation of Systolic Arrays”, in Con-
currency: Theory, Language and Architecture (T. Ito and A. Yonezawa
eds.), Lecture Notes in Computer Science 491, 297-311 (1991)

14. P. Wadler, “The Essence of Functional Programming”, Proc. 19th
POPL, 1-14 (1992)

15. E. Scholz, “Imperative Streams – A Monadic Combinator Library for
Synchronous Programming”, Proc. ICFP’98 (1998)

16. J. M. D. Hill, K. M. Clarke and R. Bornat, “The Vectorisation Monad”,
Proc. PASCO’94 (1994)

9

