
Communication Model Exploration
for Distributed Embedded Systems
and System Level Interpretations

Takashi Kinoshima, Kazutaka Kobayashi, Nurul Azma Zakaria,
Masahiro Kimura, Noriko Matsumoto, and Norihiko Yoshida

Division of Mathematics, Electronics and Informatics
Saitama University, Saitama 338-8570, Japan

yoshida@ics.saitama-u.ac.jp

Abstract. This paper presents how communication exploration can be
done in a design process of distributed embedded systems. Distributed
embedded systems involve various communication categories such as
event-triggered and time-triggered communication. Therefore, commu-
nication exploration is as important as architecture exploration. A de-
sign process begins from abstract specification without assuming any
communication category, then explores the categories in a stepwise man-
ner, and is followed by physical implementation synthesis. This paper
includes system level interpretation of the communication models using
the SpecC language so as to verify them.

Keywords: Distributed Embedded Systems, Event-Triggered Commu-
nication, Time-Triggered Communication, Stepwise Refinement Design,
Model-Driven Architecture.

1 Introduction

Modern embedded systems often work in networks, which comprise distributed
embedded systems, as found in vehicles for example. Distributed embedded sys-
tems involve communication in various layers, from bus connections to networks,
thus communication design is more important and difficult than in single em-
bedded systems.

System-Level Design have been gradually used into practice for embedded
system design. Its typical design process proceeds as shown in Fig. 1 [1,2]. It is
a stepwise refinement process from abstract specification to implementation.

An issue, from the network point of view, in the above process when applied
to design of distributed embedded systems is that communication is concerned
mainly with bus connections, thus communication exploration is not separated
from architecture exploration, in which an suitable combination of modules is
explored among several possibilities to fix an architecture model [3].

This paper presents how communication exploration can be done in a design
process of distributed embedded systems using an example of event-triggered

M. Denko et al. (Eds.): EUC Workshops 2007, LNCS 4809, pp. 355–364, 2007.
c© IFIP International Federation for Information Processing 2007

356 T. Kinoshima et al.

Fig. 1. Design Process for Embedded Systems

and time-triggered communication. This paper also includes system level inter-
pretation of the communication models using the SpecC language so as to verify
them. SpecC is used because it is tightly coupled with the above-mentioned de-
sign process and methodology. Codes of the models could be easily translated
into SystemC or SystemVerilog.

Section 2 summarizes event-triggered and time-triggered communication.
Section 3 proposes stepwise exploration of communication. Section 4 and 5 veri-
fies the communication models in SpecC. Section 6 mentions some related works,
and contains concluding remarks.

2 Event-Triggered and Time-Triggered Communication

There are two major categories for network communication in distributed embed-
ded systems: event-triggered and time-triggered. Event-triggered communication
is flexible, and appropriate for soft real-time systems. Time-triggered communi-
cation, on the contrary, is deterministic, in the sense that all instants of message
transmission are scheduled beforehand. This is suitable for applications in which
the data traffic is of a periodic nature, and this ensures dependable hard real-time
message delivery which is necessary in safety-critical applications.

Both the above have two sub-categories: centralized and decentralized. In cen-
tralized event-triggered/time-triggered communication, a single arbiter/sched-
uler manages the whole network. In decentralized event-triggered/time-triggered
communication, each module is responsible for arbitration/scheduling. The for-
mer is less expensive and easier to implement, while the latter is faster, and
more robust due to the absence of a single point prone to failures and load
concentration.

For example, below are some protocols for in-vehicle networks:

– CAN (Controller Area Network) [4,5,6]: a broadcast, differential serial bus
standard. Its bit rates is up to 1 Mbps. It is decentralized event-triggered.

– LIN (Local Interconnect Network) [7]: also a broadcast serial network. It is
designed as a small and economical substitute for CAN, and its bit rates is
up to 20 kbps. It is centralized time-triggered.

– FlexRay [8]: next generation automotive network communications protocol.
its bit rates is up to 20 Mbps. It is decentralized time-triggered.

Communication Model Exploration 357

3 Stepwise Exploration of Communication

In the conventional design process, we must select which communication protocol
to use at the beginning. Once having selected any, we cannot switch to another,
even if it is found later that another is better. A complex distributed embed-
ded system may include several categories of communication, which should be
selected depending on physical constraints, thus it is sometimes difficult or un-
able to select at the beginning. In addition, we cannot reuse a component or
framework for other systems based on any other protocols.

Consequently, referring Model Driven Architecture (MDA) discipline [9], which
is now widely accepted in Software Engineering, we investigate a design process
of communication which begins from abstract specification without assuming any
communication category, then explores the categories in a stepwise manner, and is
followed by physical implementation synthesis. Fig. 2 shows the result in outline.

At the beginning, sender and receiver modules are connected by an abstract
channel with virtual functions of sending and receiving. Then, the channel is
transformed into a more concrete model, and there are two choices: an event-
triggered channel or a time-triggered channel. The modules need no transfor-
mation. The event-triggered channel is accompanied with virtual arbiter and
filter, while the time-triggered channel is with a virtual scheduler. Next come
a centralized or decentralized model for each event-triggered and time-triggered
channel. In the decentralized model, the function of arbitration, filtering, and
scheduling are embedded in the sender and receiver modules.

At each model, a designer verifies its correctness, and then selects which way
to go, considering advantages of each path such as presented in Section 2, based
on some estimation or profiling which reflect requirements and constraints. The
designer makes decision, not at once at the beginning, but in a stepwise manner
gradually fixing details. Also, the designer verifies the system, not at once after
implements it, but in a stepwise manner.

4 SpecC Interpretation of Communication Models

This section presents interpretation of each of the seven communication models
mentioned above. The results are codes in SpecC, which can be executed and
verified. Here, only essential parts of some codes are shown.

(1) Abstract Communication Model: Each pair of sender-receiver has its
own virtual communication line which is simulated by a shared variable with
synchronization (Fig. 3). I snd and I rcv are interfaces of Chnl which connects
two behaviors Sender and Receiver. Chnl has an array of shared variables line,
each of which simulates a communication like corresponding to each Receiver
instance. ID’s are assigned to the behaviors elsewhere. An array of event e is for
synchronization between the Sender and Receiver.

(2) Event-Triggered Communication Model: The virtual and per-ID
synchronization is replaced by an arbiter and a filter for event-triggered

358 T. Kinoshima et al.

F
ig

.2
.
St

ep
w

is
e

E
xp

lo
ra

ti
on

of
C

om
m

un
ic

at
io

n
M

od
el

s

Communication Model Exploration 359

interface I_snd {
void send(ID i,DATA d); };

interface I_rcv {
DATA receive(ID i); };

channel Chnl(void)
implements I_snd,I_rcv {
DATA line[MAX];
event e[MAX];

void send(ID i,DATA d) {
line[i]=d;
notify(e[i]); }

DATA receive(ID i) {
wait(e[i]);
return line[i]; } };

behavior Sender(I_snd s) {
ID receiver_id;
DATA d;

void main(void) {
...
s.send(receiver_id,d); } };

behavior Receiver(I_rcv r) {
ID my_id;
DATA d;

void main(void) {
d=r.receive(my_id);
... } };

behavior System(void) {
Chnl ch;
Sender s1(ch);
Receiver r1(ch);

void main(void) {
par{
s1.main();
r1.main(); } } };

Fig. 3. SpecC Code for Abstract Communication Model

communication (Fig. 4). The sender’s and receiver’s behaviors remain the same
as in (1), and are omitted from the figure. Now, the Chnl contains an Arbiter
and Filter so that all the communications share a single line. The variable use
is set when any communication occupies the line.

(3) Time-Triggered Communication Model: The virtual synchronization is
replaced by a scheduler for time-triggered communication (Fig. 5). The sender’s
and receiver’s behaviors remain the same as in (1), and are omitted from the
figure. Now, the Chnl shares with the Scheduler a variable slot id, which
indicates a scheduled time slot assigned to an ID for communication.

(4) Centralized Event-Triggered Communication Model: The arbiter
and the filter are raised from the inner behavior within the channel to the top-
most behavior. The structure of codes remain almost the same as in (2), and is
omitted in this paper.

(5) Decentralized Event-Triggered Communication Model: The arbiter
and filter are duplicated, and placed into the sender’s and receiver’s behaviors
respectively (Fig. 6). The channel is replaced by a simple wire for transmission,
and the senders and the receivers share this single wire. The receiver senses the
wire to identify whether the communication is to itself or not.

(6) Centralized Time-Triggered Communication Model: The scheduler
is coordinated with the sender and receiver, not with the channel as in (3). The
structure of codes remain almost the same, and are omitted in this paper.

360 T. Kinoshima et al.

struct PACKET {DATA d,ID i};

channel Arbiter(void)
implements I_set,I_reset {
int use=0;

void set(void) {
while (use) {

waitfor(1); }
use=1; }

void reset(void) {
use=0; } };

channel Filter(void)
implements I_check {

int check(ID i1,ID i2) {
return(i1==i2); } };

channel Chnl(void)
implements I_snd,I_rcv {
Arbiter arb;
Filter fil;
struct PACKET p;

void send(ID i,DATA d) {
arb.set();
p.d=d;
p.i=i; }

DATA receive(ID i) {
while (!fil.check(i,p.i)) {

waitfor(1); };
arb.reset();
return p.d; } };

Fig. 4. SpecC Code for Event-Triggered Communication Model

behavior Scheduler(
out ID slot_id) {

ID table[MAX];
int k;

void main(void) {
k=0; while (1) {

slot_id=table[k];
k++;
if (k>=MAX) { k=0; };
waitfor(1); } } };

channel Chnl(in ID slot_id)
implements I_snd,I_rcv {
DATA slot;

void send(ID i,DATA d) {
while (i!=slot_id) {
waitfor(1); };

slot=d; }
DATA receive(ID i) {

while (i!=slot_id) {
waitfor(1); };

return slot; } };

Fig. 5. SpecC Code for Time-Triggered Communication Model

behavior Sender(I_wire w) {
ID receiver_id;
DATA d;

void main(void) {
...
while (w.sense()) {

waitfor(1); }
w.transmit(receiver_id);
w.transmit(d); } };

behavior Receiver(I_wire w) {
ID my_id,i;
DATA d;

void main(void) {
while ((i=w.sense())

&& (my_id != i)) {
waitfor(1); };

d=w.sense()
... } };

Fig. 6. SpecC Code for Decentralized Event-Triggered Communication Model

Communication Model Exploration 361

behavior Sender(I_wire w) {
Scheduler sch(slot_id);
ID receiver_id;
DATA d;

void main(void) {
par{

sch.main();
{
...
while (receiver_id

!=slot_id) {
waitfor(1); };

w.transmit(d); } } } };

behavior Receiver(I_wire w) {
Scheduler sch(slot_id);
ID my_id;
DATA d;

void main(void) {
par{
sch.main();

{
while (my_id

!=slot_id) {
waitfor(1); };

d=w.sense();
... } } } };

Fig. 7. SpecC Code for Decentralized Time-Triggered Communication Model

(7) Decentralized Time-TriggeredCommunicationModel: The scheduler
is duplicated, and moved into the sender’s and receiver’s behaviors (Fig. 7). The
channel is replaced by a simple wire for transmission, and the senders and the
receivers share this single wire. The sender’s Scheduler instance and the receiver’s
Scheduler instance synchronizes so that they give consistent scheduling.

abstract model:

0000 Sender1: start

0001 Sender2: start

0003 Sender1: send

0003 Channel: Sender1 to Receiver1 start

0004 Sender2: send

0004 Channel: Sender2 to Receiver2 start

0005 Sender1: start

0005 Channel: Sender1 to Receiver1 end

0005 Receiver1: receive

0006 Channel: Sender2 to Receiver2 end

0006 Receiver2: receive

0008 Sender1: send

0008 Channel: Sender1 to Receiver1 start

0009 Sender2: start

0010 Sender1: start

0010 Channel: Sender1 to Receiver1 end

0010 Receiver1: receive

0012 Sender2: send

0012 Channel: Sender2 to Receiver2 start

0013 Sender1: send

0013 Channel: Sender1 to Receiver1 start

0014 Channel: Sender2 to Receiver2 end

0014 Receiver2: receive

Fig. 8. Execution Log of the Abstract Model

362 T. Kinoshima et al.

5 Experiments

We have verified all the seven models appeared above, by implementing all the full
codes. All the models must preserve the same behavior (in the general sense) as the
abstract communication model that sends and receives data in an arbitrary order.
The event-triggered communication model and its centralized and decentralized
sub-models use a single wire which all the sender-receiver pair share by arbitration
as well as preserving the behavior of the abstract communication model. The time-
triggered communication model and its centralized and decentralized sub-models
use a single wire, not by arbitration but by time-slicing scheduling.

(a) Abstract Model

(b) Event-Triggered Model

(c) Time-Triggered Model

Fig. 9. Execution Sequences of Design Process for Embedded Systems

Communication Model Exploration 363

Here we present some execution logs. Fig. 8 is an log extract of the abstract
model. Fig 9 is a set of schematic sequence representations of logs of the abstract
model, the event-triggered model, and the time-triggered model, respectively.
These confirm that our models work properly.

6 Concluding Remarks

Stepwise exploration encourages stepwise decision making, component and
framework reuse, and early stage verification, all of which accelerate design
processes. This paper applies it to design of distributed embedded systems, as
the first step to communication exploration. This paper also contributes toward
integrated design of event-triggered and time-triggered communication, which
are used separately at present.

Fig. 10. UML Class Diagrams of Communication Models

364 T. Kinoshima et al.

There have been some researches on mixed scheduling of event-triggered and
time-triggered communication [10,11], however there has been none yet on com-
munication exploration in distributed embedded system design.

Our ongoing studies are interpreting them in Executable UML [9]. There is
a research trend to apply UML and MDA to System-Level Design from a few
years ago [12]. However, there has been no study on communication exploration
yet.

Some models described in UML are shown in Fig. 10 as examples. The former
is the class diagram for event-triggered communication model, and the latter
is the one for time-triggered. “EUC” (Electronic Control Unit) is an embedded
module, and “joinpoint” is a tool class for framework reuse.

We are still at the starting point of this study. Our ongoing studies are:
(1) interpreting them in Executable UML as mentioned above, (2) formalizing
semantics-preserving transformation between models to build an automatic CAD
tool, and (3) investigating some real-world applications.

References

1. Gajski, D.D., et al.: SpecC: Specification Language and Methodology. Kluwer,
Dordrecht (2000)

2. Gerstlauer, A., et al.: System Design: A Practical Guide with SpecC. Kluwer,
Dordrecht (2001)

3. Kobayashi, K., et al.: Exploration of Communication Models in the Design of
Distributed Embedded Systems. IEEJ Trans. on Electrical and Electronic Engi-
neering 2(3), 402–404 (2007)

4. Robert Bosch GmbH, CAN Specification (1991)
5. ISO TC 22/SC 3, Controller Area Network (CAN), ISO 11898 (2003)
6. ISO TC 22/SC 3, Low-Speed Serial Data Communication, ISO 11519 (2005)
7. LIN Consortium, LIN Specification (1999)
8. FlexRay Consortium, FlexRay Protocol Specification (2005)
9. Mellor, S.J., et al.: MDA Distilled: Principles of Model-Driven Architecture.

Addison-Wesley, Reading (2004)
10. Pop, T., et al.: Schedulability Analysis for Distributed Heterogeneous Time/Event

Triggered Real-Time Systems. In: Proc. IEEE 15th Euromicro Conference on Real-
Time Systems, pp. 257–266 (2003)

11. Pop, P., et al.: Schedulability-Driven Partitioning and Mapping for Multi-Cluster
Real-Time Systems. In: Proc. IEEE 16th Euromicro Conference on Real-Time
Systems, pp. 91–100 (2004)

12. Proc. 2006. Workshop on UML for SoC Design, in conjunction with ACM/IEEE
43th Design Automation Conf. (2006)

	Introduction
	Event-Triggered and Time-Triggered Communication
	Stepwise Exploration of Communication
	SpecC Interpretation of Communication Models
	Experiments
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

