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1. Introduction

To obtain drastic performance improvement, it
is effective to implement genetic algorithms (GA) in
VLSI hardware.  The structure of GA computation
and problem representation forms a good basis for
VLSI hardware.  There has already been research
carried out on VLSI hardware for GA, some of
which concerned specific problems such as pattern
matching [1], scheduling [2], the traveling salesman
problem [3] and image filtering [4], and some of
which are problem-independent [5][6][7][8].

We have been designing VLSI hardware for GA,
which we name “GAP (Genetic Algorithm Proces-
sor)” [9][10][11].  (1) GAP is a general-purpose
(problem-independent) GA-VLSI.  (2) GAP emp-
loys the steady-state GA, and enjoys efficient pipe-
line processing.  (3) GAP introduces the “simplified
tournament selection” for its selection scheme; it is
simpler and faster, yet exhibits almost the same con-
vergence compared to the roulette wheel selection
which is used in most other GA-VLSIs.

This paper first summarizes the design of GAP,
and the advantages of GAP over other GA-VLSIs.
We then present extensions to GAP for parallel and
distributed GA.  “Multi-GAP”, i.e. GAP with these
extensions, achieves even better performance than
the “Mono-GAP”.

Section 2 overviews the basic architecture of

GAP, while Section 3 summarizes each of the com-
ponent modules.  Then, Section 4 describes the
parallel and distributed extensions to GAP.  Section 5
presents prototype implementations, experiments
and evaluations. Section 6 contains some concluding
remarks.

2. Basic Architecture

2.1 Design Principles

The bit-string representation of “genotypes” and
the simplicity of genetic operations form a good
basis for GA-VLSI hardware. Genetic algorithms, in
general, apply a sequence of selection, crossover and
mutation operations repeatedly to genotype bit-
strings within a population.  These operations are
problem-independent regardless of the bit-string rep-
resentation of problems, while fitness evaluation of
genotypes is problem-dependent.

Consequently, a GA-VLSI system should be
composed of two parts: a general-purpose problem-
independent part for selection, crossover and muta-
tion operations, and a problem-dependent part for
fitness evaluation.  The problem-independent part
should contain some components, each of which cor-
responds to each of the operations of selection,
crossover and mutation.  The problem-dependent fit-
ness evaluation part is designed for a given specific
problem.
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Our design of GA-VLSI follows the above prin-
ciple as outlined in Figure 1.  GAP itself is a pro-
blem-independent GA-VLSI, and works in conjunc-
tion with a problem-dependent Fitness Evaluation
Processor (FEP).  GAP contains some modules for
random number generation and population control
along with modules for selection, crossover and
mutation.  FEP must be designed  for a given specific
problem.  GAP and FEP are connected via a popula-
tion memory.

This two-piece design is common to other gen-
eral-purpose GA-VLSI implementations as well as
general-purpose GA software platforms.  This is
because the basic schemes for selection, crossover
and mutation operations are common to most GA
applications regardless of bit-string representations
of problems.  However, some GA applications intro-
duce problem-specific selection, crossover or muta-
tion schemes, and some software platforms provide
several schemes for them.  Such sophisticated GA
applications are out of concern here, and will be
addressed in the future.

2.2 Steady-State GA

Many other GA-VLSIs have employed the con-
ventional generational GA. In that scheme, the
whole population is updated at once when a genera-
tion proceeds.  Two sets of population memories are
required for the current and next generations respec-
tively, and there is overhead for transferring or
switching one memory to the other when a genera-
tion proceeds.

Theoretical research on GA has resulted in a
new scheme, the “steady-state GA”, being proposed
[12].  In this scheme, the population is updated con-
tinuously; there is actually no concept of genera-
tions.  New genotypes, as soon as they are created,
replace old genotypes with bad fitness values within
the population. This scheme has been examined
extensively with regard to performance and conver-
gence properties, and is now gradually being
adopted by software GA systems.

GAP employs the steady-state GA.  Genotypes
are passed from GAP to FEP as soon as they are cre-

ated, and then passed back from FEP to GAP as soon
as they are evaluated.  Genetic operations and fitness
evaluations are overlapped in this way, and the whole
system works in a pipeline fashion.  Only a single set
of population memories is required.

VLSI hardware design for the steady-state GA
requires no fundamental revolution from a design for
the generational GA. Pipeline processing causes
access conflicts to the population memory, however
these are resolved by duplication of some registers
and delayed updates; the “update” phase of the pop-
ulation memory by new genotypes is delayed until
the next “read” phase has been completed.

3. Modules

We must invent algorithms and procedures for
the components which are simple enough and yet
effective.  The best procedure for software imple-
mentation may not necessarily be the best procedure
for hardware implementation.

3.1 Selection Module

Most other GA-VLSIs, as well as the previous
version of GAP, employ the “roulette wheel selec-
tion” scheme for genotype selection.  The only
exception as far as we know is a work by Shackle-
ford et al. [7].  The roulette wheel selection is the
most straight-forward scheme: the greater a geno-
type’s fitness is, the more likely that genotype will be
selected.  Its procedure is as follows:

(1) Sum up the fitness values of all the genotypes
within the current population, and generate a random
number St which is smaller than the sum.

(2) Examine the genotypes in the order in which they
appear in the population, and accumulate the fitness
values into Sa.  When Sa > St, the genotype under
examination is selected.

However, as can easily be seen, this scheme is a bot-
tleneck for VLSI hardware in respect to both circuit
size and performance.

In theoretical research on GA, some alternative
selection schemes which are better with regard to
convergence properties have been studied and exam-

Selection

Crossover

Mutation

Population
Memory

Random
Number

Generation

Fitness
Evaluation

GAP FEP

Figure 1.  Basic Architecture.



3

ined [13].  Investigating such theoretical researches,
and following the advice of Anderson [14], we have
introduced a selection scheme which is suitable for
VLSI hardware.  It is named the “simplified tourna-
ment selection”, since it is a simplified version of the
tournament selection scheme.  Its procedure, as out-
lined in Figure 2, is as follows:

(1) Select two genotypes randomly.  The better one
(with regard to fitness value) is to be “Parent A”,
with the worse one being “Dead A”;

(2) Select two genotypes randomly.  The better one
is to be “Parent B”, with the worse one being “Dead
B”;

(3) Perform genetic operations on Parents A and B,
and create Children A and B;

(4) Substitute Children A and B for Deads A and B,
and then discard Deads A and B.

Sato et al. [13] made an extensive study on
selection schemes, comparing several schemes
including the roulette wheel selection, the  tourna-
ment selection and more sophisticated ones.  They
concluded that the roulette wheel selection was the
worst, and the tournament selection was among the
second best.  The best one, which they invented, was
too complicated from the VLSI implementation
standpoint of view.

We undertook some preliminary examinations
for the simplified tournament selection in software
prior to designing GAP hardware, and obtained sat-
isfactory results as described later in Section 5.  Con-
sequently, we employed the simplified tournament
selection scheme for GAP hardware.

3.2 Genetic Operation Modules

The crossover module and the mutation module
perform corresponding genetic operations respec-
tively.  The schemes for them are the most basic
ones: the single-point crossover and the single-point
mutation.  Both operations are bit manipulations

over bit strings of genotypes, therefore they are easy
to incorporate into VLSI hardware.  Each module
takes two random numbers: a probability and an
index.  When the probability exceeds a pre-defined
threshold, the module decodes the index to obtain a
point for crossover or mutation, and then performs
the operation.

3.3 Random Number Generation Module

This module generates a sequence of pseudo-
random bit strings using the theory of linear cellular
automata (CA).  The CA scheme was proved theoret-
ically to generate better random sequences, in the
sense that the sequences had a longer cycle length,
than the scheme of linear feedback shift registers
(LFSR) which has been widely used [15].

The CA system for random number generation
consists of some cells (bits) which update their states
according to rules named “90” and “150”:

Rule 90: Si
+ = Si-1 ⊕  Si+1

Rule 150: Si
+ = Si-1 ⊕  Si ⊕  Si+1

where Si is the current state of the i-th cell (bit) in the
linear cell array (bit string), Si

+ is the next state for
Si, and ⊕  is the “exclusive or” operator.  It was
proved that a CA system whose cells update their
states by the rule list “150-150-90-150-90-...-90-
150-90-150” (Figure 3) produces a maximum-length
cycle, and has greater randomness than an LFSR
system of the same bit length.

From the VLSI implementation standpoint of
view, the CA scheme spends more gates than the
LFSR scheme.  In our experiments, the CA scheme
spends 714 gates as shown later in Figure 7, while
the LFSR scheme spends 549 for the same bit length.
However, the randomness of the random number
generation is one of the most crucial in GA imple-
mentation, and the CA scheme was proved to be
better in this respect.  Consequently, we employed
the CA scheme.
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Figure 2.  Simplified Tournament Selection.
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3.4 Population Memory

As stated earlier, there is a single set of popula-
tion memories in the system.  Each entry in the
population memory includes a pair, comprising the
bit representation of a genotype and its fitness value.

3.5 Fitness Evaluation Module

This module evaluates fitness for each genotype
within the population.  Its procedure depends upon
the mapping function and the evaluation function for
a given problem.  The fitness values must be positive
and on the-greater-the-better basis.  Fitness on the-
less-the-better basis in some problems needs to be
normalized.

4. Extensions for Parallel and Distributed 
GA

As problems to be solved become more compli-

cated, FEPs turn into bottlenecks for the overall GA
system performance.  Therefore, multiplication of
FEPs in a system can be effective for improving
performance.

In the research area of theories and software for
GA, there have already been very many studies on
parallel and distributed processing for GA.  Parallel
GA evaluates fitness values of multiple genotypes
simultaneously, and thus realizes fine-grained paral-
lel processing.  Distributed GA, or multi-deme-based
GA, uses multiple populations which are evolving
concurrently, and thus realizes coarse-grained paral-
lel processing.

The basic architecture of GAP hardware design
facilitates extensions for parallel GA and distributed
GA in line with the studies mentioned above.

4.1 Parallel GA using GAP

The simplified tournament selection scheme
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Figure 4.  Parallel GA Using GAP.
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creates two new genotypes and evaluates their fitness
values in every evolution cycle. Therefore, two FEP
chips can be connected to a GAP, as shown in Figure
4, and they evaluate the fitness values of the two new
genotypes simultaneously. The dispatch module con-
trols the two FEPs.  This parallel GA configuration is
expected to double the performance of fitness
evaluation.

4.2 Distributed GA using GAP

The distributed GA configuration of GAP is
composed of multiple GAPs working concurrently.
It is important in distributed GA that some of the
genotypes should be “migrated” between demes
occasionally in order to prevent isolated evolution
and premature convergence.  Currently, we use the
simplest scheme for migration: in every evolution

cycle, newly created genotypes are migrated to the
next deme.

GAP chips are connected to each other in a ring
form, as shown in Figure 5.  Newly created geno-
types are transferred to the population memory of
the next GAP via the emigration and immigration
modules.  This configuration is expected to acceler-
ate convergence.

5. Implementation and Evaluation

Before attempting implementation in hardware,
we programmed both the simplified tournament
selection and the roulette wheel selection schemes in
software in order to compare their convergence prop-
erties.  A result for De Jong’s function No.1 is shown
in Figure 6, in which evolution following the simpli-
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fied tournament selection (the solid line) converges
faster up to a higher plateau than evolution following
the roulette wheel selection (the dashed line).  We
confirmed that the simplified tournament selection
is, at least,  not worse than the roulette wheel selec-
tion.

We implemented the VLSI hardware design of
GAP using a hardware description language “SFL”
[16][17].  The program is approximately 1,000 lines
long.  We carried out logic simulation and logic syn-
thesis for preliminary evaluation of the design prior
to actual VLSI fabrication.  We evaluated its com-
plexity, performance and convergence.

The steady-state GA brings a 20% speedup at a
3% increase in circuit size (without regard to the
population memory) compared to the generational
GA [9].  Reducing the number of population memo-
ries from two (in the generational GA) to one (in the
steady-state GA) brings reduction of the total circuit
size which well compensates the above-mentioned
small increase for read/write conflict resolution.

The simplified tournament selection spends 1/6
amount of clock cycles of the roulette wheel selec-
tion on average for selection, and the former required
72% of the circuit size of the latter for the selection
module [10].

We here present some experiments on parallel
and distributed GA using GAP.  The specification of
the prototype implementations is:

Population size: 256
Genotype bit length: 64
Fitness bit length: 24

Crossover probability: 1
Mutation probability: 1/32

Figure 7 shows the basic block diagram of the proto-
type.  The bit width of the bus is shown along the bus
line.  Within each module box, the clock cycles
(lower left) and the number of gates (lower right) of
the module, with the CMOS 0.8µm process technol-
ogy assumed, are presented for approximate eval-
uation of the circuit size and performance.

We have three implementations:

(1) GAP with single FEP (basic GA implementation)
(2) GAP with dual FEPs (parallel GA implementa-
tion)
(3) Two GAPs, each with dual FEPs (parallel and
distributed GA implementation).

The implementation of GAP in (2) spends 1,175
more gates than in (1) for the dispatch module, and
the implementation of GAP in (3) spends 1,297 more
gates than in (2) for the emigration/immigration mo-
dules.

Problem examples used in the experiments con-
sist of:

(1) De Jong’s functions Nos. 1 and 2 (very simple
and fast to converge): His function suite is widely
used for GA system evaluation.

(2) Royal-road function [7][18] (simple but slow to
converge): This is also used for evaluation.

(3) Data-partitioning problem [19] (complex and
slow to converge): The problem is to generate a set
of N–1-dimensional hyperplane boundaries in N-
dimensional data space so that every region contains
only one data item.  Our implementation is dividing
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a plane with a set of lines.  This is one of real-world
applications of GA.

Here we show the results of examples (2) and
(3).  Below is a summary of clock cycles in a single
evolution cycle (selection, crossover, mutation and
evaluation):

Royal-road Data-partitioning
(clk)  (clk)

GAP + FEP 23 143
GAP + 2 FEP 16 76
2 (GAP + 2 FEP) 17 77

The clock cycles become almost half by the parallel
GA configuration, especially in the case of the com-
plex problem of data-partitioning.

Convergence of the royal-road function and con-
vergence of the data-partitioning problem are shown
in Figures 8 and 9, respectively.  They are both the
average of some tens of runs.  The Y-axis represents
the total fitness value of genotypes in the population;
in the distributed GA configuration, it is the average
of two populations.  As seen in the figures, the paral-
lel and distributed GA configuration exhibits faster
convergence than the basic GA implementation,
especially in the case of the slow-convergence prob-
lem of royal-road.

6. Related Works

Most other studies on VLSI hardware for GA,
some notable examples among which are mentioned

in Section 1, adopted the roulette wheel selection
scheme, which is less suitable to VLSI implementa-
tion than our simplified tournament selection scheme
as we presented.

The research by Shackleford et al. [7] is most
closely related to ours.  They proposed their original
GA procedure, “Survival-based GA”, which was
somewhat similar to the steady-state GA.  However,
they exhibited the convergence properties of their
procedure only empirically.  Our research is based
on the steady-state GA and a simplified version of
the tournament selection.  Properties of both the
steady-state GA and the tournament selection have
already been studied in theories and software imple-
mentations for GA.

The idea of parallel GA-VLSIs using more than
one fitness evaluation modules was presented in
some papers such as [5].  On the other hand, as far as
we know, the VLSI design of distributed GA con-
necting some GA chips using emigration/immigra-
tion modules is first presented in this paper.  Con-
crete implementation and simulation evaluation of
both the parallel GA-VLSI and the distributed GA-
VLSI are also our novelty.

Another interesting topic is “Evolvable Hard-
ware” which is being studied at the Electrotechnical
Laboratory in Japan [20].  In that framework, the
hardware module itself evolves.
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7. Concluding Remarks

This paper presented a VLSI hardware design
for GA, which we name GAP (Genetic Algorithm
Processor), and its extensions for parallel and dis-
tributed GA.

Our prototype implementations proved that the
architecture of GAP facilitates two-level paralleliza-
tion of parallel GA and distributed GA.  Our experi-
ments proved that parallel and distributed GA using
GAP are effective in performance and convergence
improvement.  The more complex the problems are,
the more eminent the effects is.

We previously studied an adaptive migration
scheme for distributed GA in software implementa-
tions on a workstation network [21]. The scheme is
simple enough for VLSI hardware implementations,
and we are now planning to introduce it into GAP.
In addition, we are fabricating the design of GAP
using the FPGA (Field Programmable Gate Array)
technology.
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