
STRATEGIES FOR SELECTING

COMMUNICATION STRUCTURES

IN COOPERATIVE SEARCH

SHUJI NARAZAKI, HIROOMI YAMAMURA, and NORIHIKO YOSHIDA
Department of Computer Science, Kyushu University

Fukuoka, 812-81, Japan

Received
Revised

ABSTRACT
Modeling environment is essential for agents to cooperate with each other

in a distributed system. In this paper, we propose two strategies for se-
lecting agents' communication structures in a cooperative search using their
local histories as a model of their computational environment. Under the
assumption of homogeneity of agents, an agent can select a proper commu-
nication structure by using a history of local computation, and the utility
of communication always matches its cost. Simulations using the traveling
salesman problem show that strategies produce high performance. We also
describe an extension of these strategies to other areas and the means to
separate them from application programs using meta-object programming in
Object-Oriented Programming Languages (OOPL).

Keywords: Distributed problem solving, cooperative search, self-
organization, computational reection

1. Introduction

Cooperation is a kind of meta-level computation which controls problem-level com-
putation of autonomous processing units or agents. It controls the number of agents,
rolls of each agent, communication topologies and frequencies, messages among
agents, and so on.

Forms of cooperation a�ect the performance of computation but not the se-
mantics of computation. The optimal form of computation changes dynamically,
therefore agents must choose an adequate form of cooperation during execution in
order to achieve the best performance. Classes of these forms even include sequential
or centralized computation forms. Agents are advised to choose centralized compu-
tation if they �nd it is better than decentralized (usually referred to as cooperative)
computation.

In distributed problem solving, greater knowledge of the circumstance or con-
ditions leads to better behavior of agents, but sharing them causes more commu-
nication costs. Therefore it is crucial to consider the utility of communication to
exchange local knowledge of each agent. The term \utility" stems from economics
and the game theory, and it is used to describe the quality of a result of an action.

1

If communication costs were negligible, sharing information among agents would
be the best for cooperation. But communication costs are much higher than com-
putation costs in real distributed systems. Agents can no longer have a global view.
Instead, each agent has its local view only, and there is just partial consistency of
shared information. How local the view of an agent is depends on the utility and the
cost of communication among the agents, but because its view is local, the agent
can not �nd the optimal form of communication.

Cooperative search, such as distributed vehicle monitoring, is a typical example
of distributed problem solving. Agents running in parallel perform some search
procedure. They can reduce the magnitude of their own task or improve the qual-
ity of search results by exchanging information about models of themselves, the
circumstances, and/or intermediate results. But in the distributed situation where
communication costs are not negligible, the wider and the more frequent commu-
nication is, the worse the entire performance is. Therefore deciding when and with
whom to communicate is crucial.

Finding an adequate structure of agent groups is an important issue of Dis-
tributed Arti�cial Intelligence (DAI) [4, 8, 10, 16], and there has been some research
completed: [1, 2, 15], but few communication strategies have been proposed.

In this paper, we propose communication strategies for cooperative search. Un-
der the assumption of homogeneity of agents, which means all agents have the same
computational power, our strategies estimate the real amount of information based
on the history of local revision of information. Agents control communication cost
by changing the number of agents that exchange information with each other or by
changing the frequency of communication. Consequently, programmers need not
select an e�cient communication pattern at programming time.

The structure of this paper is as follows. Section 2 describes the strategies. We
evaluate them through traveling salesman problem simulations in Section 3. Finally
we discuss the results in Section 4. Section 5 is the conclusion.

2. Communication strategies using partial models of execu-
tion

2.1. a model of communication

On distributed systems in which communication cost can not be ignored, agents
should select a communication structure. But there is uncertainty about the state
of other agents. This is caused by both a limited view of agents and the inherent
properties of problems. This makes selecting a proper structure di�cult. Thus to
avoid useless communication, it is required that agents estimate the current global
state of other agents or their environments. Agents in distributed systems can not
get the current status of the environment; they can only make an incomplete, partial
model of execution. However, making the complete execution model by exchanging
local models is not required necessarily, since the exchanging cost becomes very
high.1 Thus the utility of communication that determines how agents exchange

1The completeness of the model might not be required. Precise knowledge with a poor cooper-
ative strategy sometimes leads to sel�sh behavior. Huberman et al. described such a phenomenon
on shared object management in [14].

2

co
st

 /
in

fo
rm

at
io

n

connectivity between agents

max utility

cost
information

broadcast
blackboard

isolated

Figure 1: balancing utility and cost

information should be calculated from a local model.
Figure 1 illustrates the relation between communication density and the utility.

The dotted line shows the amount of the information that each agent has after
communication. By communicating frequently or widely, agents can hold a more
coherent, global view of other agents. But we can assume the amount of information
is bounded in the domain of distributed problem solving. The solid line shows the
cost of communication. It is monotonically increasing. Thus the utility as the
di�erence decreases. To achieve maximum communication e�ect, agents should be
in the shaded region.

In a cooperative search, agents use and exchange some pieces of information
about the problem in order to reduce the search space. Since they are acquired
dynamically, an agent can not forecast the current value of information that other
agents have without communication. But under the assumption of homogeneity of
agents and the continuity of e�ciency of computation, we can consider the distribu-
tion of the renewal of information of an agent, which is calculated from its history,
is that of another agent. Thus the current values of information that other agents
have can be estimated from its history locally. This simpli�cation makes building
a model very easy. In this case, both the communication costs and the amount
of reduced tasks due to the acquired information determine the utility. Therefore
in order to decide how to exchange information or unsolved subproblems between
agents, an agent can use its partial history as a model of execution.

Methods for changing communication costs can be put into the three categories
shown in Table 1. Though the third category has been researched by a number
of researchers, and studies has shown the importance of selecting information to
exchange, for example [3, 19, 22], few strategies that change the form of cooperation
dynamically have been proposed. The strategies proposed here belong to the �rst
two categories. The reason we select these categories is that they would lead to

3

Table 1: ways to change communication costs
axis control parameter
space number of receiver
time frequency of communication

information abstractness and quantity of information to send

communication strategies that are independent of problems to solve. Here we omit
the combination of the strategies for making the explanation simple.

Now we must give agents a decision function to select communication costs based
on a history of updating the information. It uses a simple idea. We think each step
of a distributed problem solving task consists of (local) computation and inter-node
communication. They take some periods. If we can estimate their utility, we get
the following measurement of computational speed on distributed systems:

utility-of-computation + utility-of-communication

computation-time + communication-time
: (1)

The optimal execution of a distributed program would maximize the above term.
Thus if an agent can determine performance properties of the execution environ-
ment and the utilities above with their local history, it can manage its communi-
cation cost. And by changing the form of communication, the expected utility of
communication will be maximized. The selected form would not be optimal but
probabilistically optimal.

In this framework, an agent consists of a problem solving module, a communica-
tion management module and a model of execution. Figure 2 shows the structure.
Communication management modules are independent of algorithms of problem
solving modules. Two modules in an agent interact through the model. At each
step of the execution of the problem solving module and receiving information from
others, current information changes the model. With the model and the communi-
cation cost function, the communication management module maximize the term
(1) under the assumption of their homogeneity.

In cooperative search, exchanged information consists of hints, subproblems,
the estimated value of a heuristic evaluation function or anything that reduces the
amount of the job and is found during execution. In the following evaluation, we use
the strategy to exchange hints themselves. The strategy of exchanging subproblems
in a distributed A� search will be described in section 4.

2.2. controlling spatial connectivity of agents

The �rst strategy, the range control strategy manages the cost by changing the
number of receivers. It changes spatial connectivity of agents. This strategy assumes
changing the number of receivers a�ects the communication cost. And we use
function n=(n + 1) as the expected value of information gathered from n agents.
This means that the quality of the renewal of information is uniformly distributed.
This term can be acquired by the following calculation. Let x 2 [1=N:::N=N] be
the possible value of information, and its probability p(x) be 1=N. The e�ect of
communication among n agents can be considered as getting the maximum value

4

modification of
a object by
local computation model

communication request
decide how
to communicate

communication
management

module

problem solving
module

notify

other agents

receive

refer

notify

Agent

Figure 2: structure of searching agent

after n trials: pn(x) � (xN)n � f(x � 1=N)Ngn. Thus the expectation of pn(x)
becomes:

E[pn(x)] =
1X

x=1=N

xpn(x)

=
NX
x=1

xn+1 � x(x� 1=N)n)

= 1�
1

N

(N�1)=NX
x=1=N

xn:

By N !1, we get the result:

E[pn(x)] = 1�
1

n+ 1
=

n

n+ 1
:

Since this function has an upper boundary, the speed of an agent has a peak if
the communication cost is at least a monotone increasing function.

Now we show the adaptability of this strategy in a simple game. In this game,
each agent gets either a �xed positive number (100) as a pro�t or zero as no result
at every step according to the following function:

value =

�
100 if random(x) = 0
0 if random(x) 2 [1::x � 1];

where random(x) returns a random number in [0:::x � 1]. Each agent stores the
result in its history memory and exchanges it with others in order to share the best
pro�t. If the possibility of getting a pro�t is large, namely x is small, the utility

5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

si
ze

 o
f r

an
ge

x = 1 / probability of getting profit

0.1c
0.01c

0.1ln(c)

Figure 3: the e�ect of the heterogeneity of agents

Each agent is assigned 100 if random(x) = 0, otherwise 0. Communication
cost is 0:1c, 0:01c or 0:1 ln(c), where c is the number of packets sent in a step.
The sizes are average values after 20 steps of 100 simulations.

of communication becomes low. At the same time, if agents merely get pro�t, the
utility also becomes low. In these two cases, the heterogeneity of distribution of
information is small, which means the range of communication should be small. If x
and communication cost are �xed, the size of communication range would converge
after some iteration. And we can change the utility of communication by changing
n. Figure 3 shows the result. Here communication cost is 0:1c, 0:01c, or 0:1 ln(c),
where c is the number of packets sent in a step. The sizes are average values after
20 steps of 100 simulations. We can �nd a peak size at x = 20 � 30. The size at
the peak is a�ected by communication costs. This result shows that the strategy
selects a proper connectivity of agents.

Now we analyze the quality of the strategy in a cooperative search. First we
build a simple model of a cooperative search. In a cooperative search, each agent
expands the nodes or subproblems in a state graph and exchanges hints if needed.
We assume that agents use a branch-and-bound method. They iterate the job until
no unexpanded node remains. Thus the size of unsearched space St at step t is
described as:

St = (1� k(n))(St�1 �Np)

where N is the number of agents, p is a searched space by an agent at a step, k(n)
is the space cut with the best hint that is exchanged by n agents and the whole
search space S0 as the initial state is 1. Because we assume agents are homogeneous
concerning average speed, p is identical for all agents. Exhaustive search terminates

6

flat structures

hierarchical structures

n=9n=5n=2n=1

n=9n=4n=3

Figure 4: two spatial structures

at step t� such that St� = 0. Here t� becomes:

1

log(1� k(n))
log

�
(1 � k(n))Np

1� (1�Np)(1� k(n))

�
:

Since the time to execute one step is the sum of the time of a single computation
and the time to communicate n members T (n), total execution time T will be:

T =
1 + T (n)

log(1� k(n))
log

�
(1� k(n))Np

1� (1 �Np)(1 � k(n))

�
;

where we use the computation time as the unit of time. Assuming Np;k(n) � 1,
which means the search takes a long time, T becomes:

T �
1 + T (n)

Np+ k(n)
:

This is a �rst-order estimation of the optimal execution that maximizes the utility
of communication.

This strategy is applicable to two topologies; at structures and hierarchical
ones, as shown in Figure 4.

In hierarchical structures, agents make some clusters. An agent searches in a
�xed period, then collects some pieces of information with one-to-one communica-
tion from a cluster and sends back the combined information to the member of the
cluster. The agents collecting information are shown as shaded nodes in Figure 4.
Solid arrows in the �gure show exchanges of information in a cluster. And dashed
arrows shows inter-cluster communications among information collectors. The other
members communicate only with the collector. If the size of communication range n
becomes larger, clusters grow and the number of them decreases. Using hierarchical
communication structures will reduce the number of communication from O(n2) to
O(n). Hierarchical structures will be better than at ones.

Furthermore, role di�erentiation might occur in the group of identical agents. If
the communication range becomes very large, collecting tasks becomes a bottle neck.

7

Then the agent collecting information should stop the computation and devote itself
to managing communication in the cluster. Therefore we can develope a method
emerging heterogeneous group from homogeneous agents. In this method, every
agent checks the size of its communication range. If it reaches a threshold size, an
agent becomes an information collector or a member of a cluster that already exists.
We can decide the threshold size using the result of the following paragraph. Since
this change is a probabilistic process, clusters grow gradually.

Mathematical analysis shows the existence of a phase-transition between at
structures and heterogeneous hierarchical ones. For simplicity we assume agents
use one-to-one communication; the cost of multicast between n agents is O(n). The
processing speed of both structures communicating n agents becomes:

1 + k(n)

1 + l(n� 1)

n

n+ 1

1 + k(n)

1 + l
;

where k or cooperation e�ect is the factor of the quality of cooperation between
n agent k(n) = kn=(n + 1), and l is the communication cost at one-to-one com-
munication. Cooperation e�ect depends on the distribution of the value of new
information. The phase transition at which two strategies have the same speed
occurs at the following n1:

n1 = 1 +

r
2 +

1

l
> 2: (2)

And by di�erentiating the term (1 + k(n))=(1 + l(n � 1)), the max speed of at
structures is at the following n2:

n2 =
�l +

p
l2 � (k + 1)l(�k + l + kl)

(k + 1)l
: (3)

Figure 5 shows the result. In Figure 5 (a), Equation (2) draws a smooth plane,
and Equation (3) forms a plane with a peak. The cross lines of planes in Figure 5
(a) are shown in Figure 5 (b) from another view: the intersection of both planes
forms a dotted line. Figure 5 (b) also shows the boundary in which communication
has positive utility as a solid line. These planes divide k-l plane into three regions.
In the �gure, Region A requires no communication, B (n1 > 1) should use a at
structure and C (n2 > n1) requires a hierarchical structure. Both communication
structures are required if communication cost or the distribution of the information
varies. Agents must select an appropriate structure and their roles during the
execution.

Therefore we can extend the range control strategy to a communication structure
selecting strategy. It selects a proper structure based on expected communication
costs at every step. If agents �nd that a hierarchical structure is better than a at
one, some of them become information collectors, and others communicate with one
of the collectors.

An information collector manages the size of a group or a cluster after clustering.
This strategy creates hierarchical structures autonomously. If the reorganizing cost
is low, structure selecting strategy is better than the range control strategy.

8

k: coopration effect, l: communication cost

0.01
0.1

1
10

0.1

1
-5

0

5

10

k

l

range

(a)

cooperation effect

A (no communication)

B (flat)

C (hierarchical)

0.01 0.1 1 10

0.1

comm. cost

(b)

Figure 5: phase transition between strategies

Furthermore, if the information collection becomes a bottle neck once more be-
cause of the increase of the size of the cluster, making second level clusters might be
required. Though we have not implemented the strategy on multi-cluster structures,
a multi level hierarchical system seems rational if the system confronts a problem
with large uncertainty[21]. Social organization should emerge out of necessity.

9

2.3. controlling frequency of communication

As well as the range, the frequency of multicast a�ects the performance of the
system. Frequency control strategy changes the rate of the update of information.
If the information increases monotonically, we can defer the communication until
accumulated updates are worth exchanging. In this strategy, to calculate the utility
of communication, we can use a similar model of computation to the one in range
control strategies above. While range control strategy extrapolates the value of
the best information found in n agents, frequency control strategy extrapolates the
value in the whole system or a cluster after m local computation steps. Using a
similar model used above, we have evaluated the quality of this strategy. It gives a
good estimation of the frequency when the search takes a long time.

While agents in the range control implementations are homogeneous and each
of them decides the range of multicast by itself, in the current implementation of
the frequency control strategy, a unique agent decides the timing of broadcasting of
all agents in the system. It will be possible to implement another strategy in which
each agent selects its frequency.

3. Evaluation of the strategies

The quality of the strategies has been measured with simulations of the Traveling
Salesman Problem (TSP). TSP was de�ned by A. J. Ho�man and P. Wolfe in p. 2
of [18] as:

The TSP for a graph with speci�ed edge lengths is the problem of �nding
a Hamiltonian cycle of shortest length.

A Hamiltonian cycle is a cycle that contains all the vertices of the graph exactly
once. We implemented range control strategies on both at spatial structures and
hierarchical ones, frequency control strategy and �xed strategy for comparison. A
number of agents can search the shortest path in parallel. And we used a branch-
and-boundmethod in the problem solving module that exchanges the cost of current
best path as a threshold. Since the quality of threshold increases monotonously,
merging some pieces of information (threshold) means only selecting the best one
among them. It relieves the expectation cost. The pseudo-coded algorithm is the
following:

do in parallel f
while (global bag is not empty) f
pick up a candidate from global bag
expand it
if (a new node is better than threshold)
update local threshold and multicast it

g
g

In this simulation, the number of cities is 10 and the length of histories is 10. The
system consists of 100 agents. In this case, the threshold updates over 200 times.
After each expanding node, the di�erence between the value of current threshold

10

220

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60

tim
e

initial range

fixed
flat structure
hierarchical

(a) execution time

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

r
a
n
g
e

step

(b) changes of the communication range

Figure 6: the result of spatial strategies

and the one before the expansion is stored in the history memory of an agent. Since
the history holds the revision of information, we can calculate the expected value of
information that other agents get most recently. Thus a Monte Carlo simulation on
the history gives the agent the expected best value among n agents. At every step,
agents select a communication structure. Since the simulator models asynchronous

11

210

220

230

240

250

260

270

280

290

300

5 10 15 20 25 30

to
ta

l t
im

e

initial interval

controlled(cost = 0.1)
fixed(cost = 0.1)

controlled(cost = 1.0)
fixed(cost = 1.0)

(a) execution time

0

5

10

15

20

25

5 10 15 20 25 30 35

in
te

rv
al

 b
et

w
ee

n
m

ul
tic

as
ts

phase: interval between multicasts

cost = 2.0
cost = 1.0
cost = 0.5
cost = 0.1

(b) changes of the broadcast frequency

Figure 7: the result of frequency strategy

The cost of communication is shown as the ratio compared with the com-
putation cost. `Phase' is the local computation steps between two broadcasts.

networks, range control strategy on hierarchical structures requires some steps of
communication in order to change cluster size.

The result shows that the strategies proposed achieve good performance against
a�ected communication costs. A result is shown in Figure 6 and 7. The communi-
cation cost used in Figure 6 (a) is 0:01+ 10�5x+10�9x2, where x is the number of

12

all communications (packets) in the step. We select it rather than a linear function,
because it shows non linearity if the number becomes large. This non-linearity is
introduced to imitate the congestion on network. And we ignore the cost of getting
subproblems from the global bag. In Figure 6 (b), the solid line shows range control
strategy on at structures, the dashed line shows the optimal size given by control
structure on hierarchical structures, and the dotted line is the real size of clusters on
hierarchical structures. Strictly speaking, the communication cost used in Figure 6
(b) is di�erent from the one in Figure 6 (a). The cost function hardly a�ects the
tendency of range change. All points are average values of 10 � 100 data.

The properties we can �nd are summarized as:

(i) Changing the range and the frequency during the execution is useful. The
initial range hardly a�ects the performance in both structures. As Figure 6
(b) shows, there are three stages from the view of the size of ranges on both
structures. In the �rst stage (at 0 � 20 step) and the last stage (over about
150 step) the communication range is relatively small. This result is derived
from the nature of the searching process. At the initial stage, for no agent
�nd a new threshold, the strategy reduces the communication range. In the
middle stage (at 20 � 150 step) where the distribution of agents' information
becomes large, the range becomes very large. In particular, the strategy on
hierarchical structures changes sharply, because an information collector of
a cluster controls the size of the cluster. The best answer was often found
at 80 � 150 step. At the last stage after �nding and broadcasting the best
answer, updating the threshold never occurs and no more communication
is needed. In conclusion, the more frequently information is renewed, the
more frequently or more widely identical agents communicate. But excessively
frequent updates decrease the number of communication.

(ii) In frequency control strategy, the frequency of communication is a�ected by
the communication (broadcast) cost. Similarly, the size of communication
range decreased if its cost is high where the utility of communication becomes
low.

(iii) There is no clear di�erence between at structures and hierarchical struc-
tures. The reason is the peak size of ranges is not so large in this simulation
and changing cluster size requires some other communications on hierarchical
strategies. This reduces the merit of hierarchical structures. However experi-
ments with other cost functions showed large communication costs make the
di�erence clear.

The properties described above are held in other communication cost functions
from O(log(n)) to O(exp(n)). They hardly depend on a cost function if it increases
monotonously. In conclusion, programmers need not care about the communication
topology by using the strategies.

4. Discussion

In this section, we discuss the applicability of these strategies to other �elds and
ways of implementing these strategies. Related works are also described.

13

4.1. applicability of the strategies

The current shortest path as a threshold in TSP is a kind of information that
is acquired during execution. The search algorithm used here does not use any
estimation heuristics. In a general case, we can use an estimated value as the
measure for modeling execution status. Considering A� search, the quality of a
node (subproblem) is measured by an evaluation function. Thus we can use the
strategies for exchanging subproblems with the following relations.

application our TSP simulation A� search
measure update rate of threshold update rate of estimated value
exchanged data threshold good unexpanded subproblem

Furthermore, the strategies can be applied not only to cooperative search. They
can be thought of as algorithms for managing the consistency of an object that is
shared weakly between agents. In addition, the idea of using a local history as a
model of environment could manage shared objects with strong consistency. Usually
strongly consistent objects are used much more than weak consistent objects on
distributed systems. Thus the programmers' burden of keeping coherency e�ectively
will be relieved in a number of application areas.

In this case, the measure of execution is the ratio of local access and remote
access. Exchanging values among processors is a shared object itself. If the current
cost for remote access is higher than the expected cost for managing coherency,
shared object should be duplicated and distributed. On the other hand, if it is
low, the objects should be merged to reduce the cost in writing. If agents (copies
of a shared object) know the access ratio su�ciently with the access history, the
strategies would work well.

Here we summarized the limitations of a proposed scheme:

(i) Communication cost must be known before execution. It would be di�cult
on the system that has hierarchical topology or a large-scale open system.

(ii) The strategies assume homogeneity of agents. We describe a solution to it in
the next section.

4.2. separation of communication strategy from problem-level program

Communication strategy changes the behavior of an agent by using a history that is
a measure almost independent of a problem-level program. Thus we think deciding
communication structures should be a kind of computational reection [20]. This
means communication strategy could be separated from problem-level programs
and would be a metal-level description of program solving agents.

This separation has two merits:

(i) Programming is divided into two independent subtasks: building communica-
tion strategy and writing problem-solving codes. As a result, writing codes for
communication strategies can be omitted from problem-solving programmers'
task. It also makes reusing the communication strategy easy. Communication
strategy can be used as a library.

14

update-function

communication-strategy-metaclass

(defclass agent ()
 ((threshold :accessor threshold
 :update-model
 ...)
 ...)
 (:metaclass))

communication-strategy-metaclass

range-control-metaclass frequency-control-metaclass

subclass

Metaclass

.......

Object class

Figure 8: description with metaclass

(ii) Since communication strategy is included in the semantics of language, the
strategy could be invoked automatically when needed. For example, if a com-
munication strategy is de�ned as metalevel computation of the assignment
to a slot that holds information to exchange, all modi�cation of the slot in-
vokes the strategy. We can omit explicit invocation codes from problem-level
program.

Some object-oriented-programming languages have meta objects that represent
behavior of objects. In particular CLOS (Common Lisp Object System)[23] has
exible interface to meta level programming, which is known as CLOS MOP (Meta
Object Protocol) [17]. Thus we have re-implemented our TSP simulator in CLOS.

Figure 8 shows the relation of classes in our system. As shown in the �gure,
metaclass communication-strategy-metaclass is an abstract class for communi-
cation strategies. The strategies we mentioned here are subclasses of this class. A
programmer declares one of these strategies as the metaclass of his agent class. He
should also add a keyword parameter :used-in-cooperation to the slot that is
the measure of execution. The metalevel class adds some methods for managing its
history into the agent class at the de�nition time. And it invokes the method for
communication strategy automatically when the agent wants to send information.
A communication cost function is given in creating its instances by users.

When an assignment to the slot that holds information to exchange are done,
communication strategy as a part of new semantics of the assignment is invoked
automatically. Deciding communication structure and sending information is done
in meta-level.

15

4.3. related work

Huberman stated that cooperation between searching agents improves performance
through theoretical analysis[12, 13]. Hogg also researched cooperation in a graph
problem[11]. But they did not mention how to communicate with each other and did
not consider communication costs. Their works are a kind of cooperation in parallel
activities. Need for cooperation is not emerged from the constraint of execution
environments but from the property of problems; the communication structure for
cooperation depends on the problem itself.

Sycara et al. researched distributed search [24]. They have proposed a method
of selecting a piece of information to send among agents. The structure of job
assignment to agents is �xed during the execution.

Durfee et al. proposed a cooperation method in a distributed vehicle monitoring
system [4]. In their model, the search space is divided by view ranges of agents.
Information exchanged between agents is row data, the path of a detected vehicle
or plan. The abstract level of information a�ects the performance. This model has
two points di�erent from our TSP example. First, tasks for agents are divided in a
�xed way before execution. It is result-sharing rather than task-sharing. And they
did not propose a way of selecting communication structure dynamically. Second,
they changed the form of cooperation by changing the abstract level of exchanged
information.

The relations between OOPL or meta object and Multi Agent System (MAS) has
been discussed in [5, 6, 9]. But separation of communication policy using metaobject
from a problem-level program has not been proposed. We think that the separation
is a step toward multiagent oriented programming language from OOPL.

5. Conclusion

In this paper, we have mentioned communication strategies based on partial his-
tories of agents for modeling their environment to select e�cient communication
structures dynamically. The results of experiments show that strategies give good
communication structures to autonomous agents. We expect that local history as
a qualitative model of revision of information, which is a measure of execution, is
useful for MAS.

Though there are some restrictions such as the implemented strategies assuming
homogeneity of agents, the simplicity of combining some pieces of information, and
the information of the communication cost function, we think that these strategies
can be used in many applications that acquire new information in execution time,
if we can �nd information which value increases monotonously and can build a
communication cost function. These would contain distributed database systems
that replicate data.

The history-based expectation mechanism could apply to not only homogeneous
environments but also heterogeneous ones. The history of the revision of information
at other agents in current implementations is not separated from its own history.
Agent exchange the information with each other and update its history with the
received information. But in heterogeneous network, this dispersion would become
an important problem. The implementation and the evaluation of strategies based

16

on separated histories are a future plan. It will also work on heterogeneous agents.
In this paper, we proposed a cooperation scheme on distributed systems. How-

ever cooperative processing is not only useful on distributed systems but also on
concurrent systems. One example that requires cooperation, even if the communi-
cation cost can be ignored, is a parallel search based on genetic algorithm. A search
process would fall in a local minimum position by over-distribution of the best code
at each step. Thus broadcasting the best code pattern does not necessarily lead
to the optimal form of computation. The same discussion is held on heuristic-base
parallel search. In these examples, cooperation changes the way of sharing infor-
mation between agents. Thus we can de�ne cooperation as methods for selecting
an appropriate structure of processing elements. Its application is not restricted to
distributed systems. We think that local-history based methods like ours would be
useful for building schemes on such systems.

References

[1] Nicholas M. Avoris and Les Gasser, editors. Distributed Ariticial Intelligence:
Theory and Praxis. Kluwer Academic Publishers, 1992.

[2] Alan H. Bond and Les Gasser, editors. Readings in Distributed Arti�cial In-
telligence. Morgan Kaufmann, 1988.

[3] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent Co-
operation Among Communicating Problem Solvers. IEEE Transactions on
Computers C-36, pages 1275{1291, 1987. Reprinted in [2], pp.268{284.

[4] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Cooperation
Through Communication in a Distributed Problem Solving Network. In Huhns
[15], chapter 2, pages 29{58.

[5] Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for
Distributed Arti�cial Intelligence. In Proceedings of the International Confer-
ence of Fifth Generation Computer Systems, pages 755{762, 1988.

[6] Jacques Ferber and P. Carle. Actors and Agents as Reective Concurrent
Object:a Mering-IV Perspective. IEEE Transactions on Systems, Man, and
Cybernetics, 21(6):1420{1436, November/December 1991.

[7] Stephanie Forrest, editor. Emergent Computation. The MIT Press, 1991.

[8] Les Gasser. Boundaries, identity, and aggregation: Plurality issues in multia-
gent systems. In Eric Werner and Yves Demazeau, editors, Decentralized A.I.
3, pages 199{213. Elsevier Science Publishers B.V., 1992.

[9] Les Gasser. Object-Based Concurrent Programming and Distributed Arti�cial
Intelligence. In Avoris and Gasser [1], pages 81{107.

[10] Les Gasser, Nicholas F. Rouquette, Randall W. Hill, and John Lieb. Repre-
senting and using organizational knowledge in distributed AI systems. In Les
Gasser and Michael N. Huhns, editors, Distributed Arti�cial Intelligence, Vol.2,
chapter 3, pages 55{78. Pitman/Morgan Kaufmann, London, 1989.

17

[11] Tad Hogg and Colin P. Williams. Solving the Really Hard Problmes with
Cooperative Search. In AAAI-93, pages 231{236. AAAI, AAAI Press/The
MIT Press, 1993.

[12] Bernardo A. Huberman. The performance of cooperative processes. Physica
D, 42:38{47, 1990. Reprinted in [7].

[13] Bernardo A. Huberman. The value of cooperation. In Michael Masuch and
Massimo Warglien, editors, Arti�cial Intelligence in Organization and Man-
agement Theory, chapter 10, pages 235{243. Elsevier Science Publishers B.V.,
1992.

[14] Bernardo A. Huberman and Tad Hogg. The befavior of computational ecolo-
gies. In Bernardo A. Huberman, editor, The Ecology of Computation, pages
77{115. Elsevier Science Publishers B.V.(North-Holland), Amsterdam, 1988.

[15] Michael N. Huhns, editor. Distributed Arti�cial Intelligence. Morgan Kauf-
mann, 1987.

[16] Toru Ishida, Les Gasser, and Makot Yokoo. Organization Self-Design of Dis-
tributed Production Systems. IEEE Transactions on Data and Knowledge
Engineering, 4(2):123{134, 1992.

[17] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. The MIT Press, 1991.

[18] E.L. Lawer, J.K. Lenstra, D.B. A.H.G. Ronnoony Kan, and Shmoys, editors.
The Traveling Salesman Problem. Addison Wesley, 1985.

[19] Victor Lesser and D. Corkill. Functionally accurate, cooperative distributed
systems. In Bond and Gasser [2], chapter 4.3.1, pages 295{310.

[20] Pattie Maes and Daniele Nardi, editors. Meta-Level Architectures and Reec-
tion. North-Holland, 1988.

[21] Herbert A. Simon. The Sciences of the Arti�cial. The MIT Press, Boston,
second edition, 1981.

[22] Young-Pa So and Edmund H. Durfee. A Distributed Problem-solving Infras-
tructure for Computer Network Management. International Journal of Intel-
ligent & Cooperative Information systems, 1(2):363{392, June 1992.

[23] Guy L. Steel Jr. et al. Common Lisp the Language. DEC press, second edition,
1990.

[24] Katia P. Sycara, Steven F. Roth, Norman Sadeh, and Mark S. Fox. Distributed
constrained heuristic search. IEEE Trans. Syst. Man Cybern.(Special Issue on
Distributed AI), 21(6):1446{1461, 1991.

18

