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Abstract

Track estimation of targets from sensor data is a
crucial issue in active dynamic scene understand-

ing. Multitarget motion analysis, where there are
multiple moving targets and multiple �xed sensors
which only measure bearings of the targets, is to as-
sociate targets and sensor data, and estimate target
tracks based on that association. This is an NP-
hard problem in general, and solved using stepwise
relaxation. However, it is hard to obtain the opti-
mal solution, as the method easily gets trapped in
one of local optima.

We applied the decentralized cooperative search
technique to this problem, and proved our method
e�ective. The method uses more than one proces-
sors, each of which has its own partial search space,
searching multiple possibilities in parallel. This ap-
proach leads to cooperative distributed vision. We
are currently extending our method to address the
case where targets move toward varying directions
and in varying velocities. This report shows the
current status of our research, and presents two
prototypes of cooperative multiagent systems for
\extended" multitarget motion analysis.

1 Introduction

This research is aiming at forming a basis for mul-
titarget motion analysis by decentralized coopera-
tion in the research project of `Cooperative Dis-
tributed Vision for Dynamic Three Dimensional
Scene Understanding' [1, 2] funded by The Re-
search for the Future Program of the Japan Society
for the Promotion of Science.

Localization and tracking of moving targets from
data obtained by sensors is a crucial issue in ac-
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Figure 1: Multitarget Motion Analysis.

tive dynamic scene understanding. There is a class
of problems called \multitarget motion analysis",
where there are multiple moving targets and mul-
tiple �xed sensors which only measure bearings of
the targets [3, 4, 5, 6].

A typical target-sensor encounter is shown in
Figure 1. Each sensor measures angles of the in-
coming signals. The positions and velocities of tar-
gets are estimated by �nding the set of targets that
generates bearing histories that match the bearing
measurements best. The problem is divided into
two: a data association problem and a bearings-
only estimation problem.

Multitarget motion analysis in general is known
to be an NP-hard problem, and therefore, several
methods have been proposed, among which relax-
ation methods based on the maximum likelihood
principle are the most commonly used. The condi-
tional likelihood function of measurements is maxi-



mized over both data associations and target initial
states in a stepwise manner. However, this likeli-
hood is not a simple convex function; besides the
global optimum, there are some local optima dis-
tributed randomly in the search space. The method
easily gets trapped in one of these local optima.
To obtain global convergence, a stochastic search
method for association was proposed and proved
to be e�ective [6]; however, it is highly computa-
tionally intensive.

There is another approach to obtain the global
optimum. Decentralized cooperative search [7] is a
method which uses more than one processors, each
of which has its own partial search space, search-
ing multiple possibilities in parallel. Data obtained
from a sensor is sent only to near-by processors,
each processor estimates target tracks from locally
collected sensor data, and all the processors in the
system exchange their intermediate estimation re-
sults with each other occasionally in order to ensure
consistency of estimations and obtain the global
optimum. This approach leads to cooperative dis-

tributed vision.

Most researches on multitarget motion analysis
address the case where all the targets move toward
�xed directions and in constant velocities. We al-
ready designed a multiagent system for such kind
of multitarget motion analysis, and evaluated it by
simulation [8, 9]. Our experiment proved that our
cooperative method spent the same amount of time
and gained better estimation qualities compared to
conventional relaxation methods; in other words,
our method was equivalent in estimation qualities
and almost ten times faster compared to a stochas-
tic relaxation based on simulated annealing [6].

We are currently extending our method to ad-
dress the case where targets move toward vary-
ing directions and in varying velocities. This re-
port shows the current status of our research, and
presents two prototypes of cooperative multiagent
systems for \extended" multitarget motion analy-
sis.

1. Based on our previous results which realized
linear track estimation, the �rst method re-
peatedly estimates short linear portions of tar-
get tracks, and overlaps them to estimate en-
tire curve tracks.

2. The second method is a new one. It estimates
the locations of targets every time, and by se-
quencing them, estimates arbitrary shapes of
entire tracks.
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Figure 2: Decentralized Processing.

The second one is simpler and less computationally
intensive, however more prone to errors and mutual
occlusions than the �rst.

Section 2 overviews the decentralized cooperative
framework for multiagent systems for multitarget
motion analysis. Section 3 summarizes linear track
estimation in multitarget motion analysis. Section
4 describes its extension for curve track estima-
tion, and Section 5 describes the new sequenced
location-wise estimation. Section 6 contains some
concluding remarks.

2 Cooperative Framework for

Track Estimation

In contrast to most previous systems for multitar-
get motion analysis which have centralized pro-
cessors to collect all the sensor data, our system
has several processors in a decentralized fashion,
i.e. there is no centralized manager nor supervi-
sor. Sensors are grouped into some, and each sen-
sor group has its own processor. Figure 2 shows an
outline of this scheme. Notice that a sensor may
belong to more than one group. Sensors are �xed
at some locations and measure bearings only, there-
fore every group must have at least two sensors.

Each processor does estimation using data from
the sensors in its group. However, if a proces-
sor would do this in an entirely isolated fashion,
i.e. without any interaction with other processors,
the system could only get a set of some mutually-
independent estimations, each based on incomplete



data, and there would be no integrity nor consis-
tency in overall estimation results. Therefore, it is
important to exchange some information occasion-
ally among processors. This is a common situation
in distributed arti�cial intelligence systems and au-
tonomous decentralized systems.

Exchanging raw (unprocessed) sensor data would
make this decentralized system equivalent to a cen-
tralized system where all the sensor data were col-
lected by all the processors. In our system, each
processor exchanges intermediate estimations with
all other processors once in an estimation iteration.
Acquiring all the intermediate estimations (includ-
ing its own), a processor chooses the best one in
the light of its local sensor data, and then proceeds
to the next iteration.

3 Linear Track Estimation

3.1 Problem Formulation

As shown in Figure 1, the system consists of n tar-
gets moving to �xed directions with constant veloc-
ities and s �xed sensors in a two-dimensional space.
The state of a target t (t = 1; : : : ; n) is de�ned by
its position (rtx; r

t
y) and velocity (vtx; v

t
y) as

rtx(k) = rtx(0) + k�vtx(0)

rty(k) = rty(0) + k�vty(0)

vtx(k) = vtx(0)

vty(k) = vty(0):

where � is the sampling period, and k is the time
index. The state of a sensor is described by its
position (rixs; r

i
ys). The relative state vector of the

target t to the sensor i is thus

Xt;i(k) =
�
rt;ix (k); rt;iy (k); vtx(k); v

t
y(k)

�0
;

and bearing data is

�t;i(k) = tan�1

"
rt;ix (k)

rt;iy (k)

#

An n � n assignment matrix Ci(k), which con-
tains only 0� 1 elements and just one 1 element in
every row and column, is introduced for each mea-
surement vector �i(k), as an example for the case
of n = 3 is shown below:
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There are n! possibilities for Ci(k). The entry�
Ci(k)

�
jt
= 1 denotes that the jth element of the

measurement vector �i(k) is associated with the
target t. We seek a joint maximum likelihood so-
lution for Ck and
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3.2 Track Estimation

An outline of the estimation procedure is

Procedure (centralized)
Set a suitable target initial state vector;
repeat
(1) Given a target initial state vector,
�nd the best assignment matrix;
(2) Given an assignment matrix,
�nd the best target initial state vector;
until converged.

Given an estimated target initial state of the tar-
get t

X̂t
0 =

�
r̂tx(0); r̂

t
y(0); v̂

t
x(0); v̂

t
y(0)

�
0

;

each scalar bearing estimate is related to the state
vector by

�̂t;i
�
j; X̂0

�
= tan�1

"
r̂t;ix (j)

r̂t;iy (j)

#
;

the predicted bearing vector for the sensor i at time
j is

�̂i
�
j; X̂0

�
=
�
�̂1;i

�
j; X̂0

�
; : : : ; �̂n;i

�
j; X̂0

��
0

;

To maximize the conditional likelihood of �k

given Ck and X̂0, we can minimize the correspond-
ing average square error (ASE), which is
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1

skn
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where m = c(i; j; t) if [Ci(j)]mt = 1.

With Ck �xed, these n independent Et's can be
minimized with respect to X̂t

0 by the Gauss-Newton
iteration. This is the step (2) in Procedure (cen-
tralized).

For a given X̂0, minimizing E with respect to
Ck is equivalent to minimizing each individual
term independently with respect to Ci(j). This
minimization is a linear assignment problem, in
which n bearing trajectory estimates �̂1;i(j; X̂0),

� � �, �̂n;i(j; X̂0) are to be assigned n raw measure-
ments �1;i(j); � � � ; �n;i(j). This is the step (1) in
Procedure (centralized).

An outline of the decentralized estimation pro-
cedure is

Procedure (cooperative) in each processor
Set a suitable target initial state vector;
repeat
(1) Given a target initial state vector,
�nd the best assignment matrix;
(2) Given an assignment matrix,
�nd the best target initial state vector;
(3) Send the target initial state vector
to all other processors;
(4) Receive target initial state vectors
sent from all other processors;
(5) Choose a target initial state vector
with the least ASE;
until converged.

The steps (1) and (2) in Procedure (cooperative)
decrease the non-negative value E monotonically
(at least do not increase), and the step (5) chooses
a vector with the least ASE. Therefore, in each
processor, the procedure is guaranteed to converge.
When the procedure in every processor converges,
the whole system terminates. Each processor has
its own estimation then, and the best one is the
�nal solution.

3.3 Simulation Experiments

We did some experiments by simulation to evaluate
our system. We used randomly generated 16 cases,
and compared some methods (This report shows
three out of four which we tried; more details is in
[8, 9]):
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Figure 3: Estimated Tracks.



Table 1: Summary of Experiment Results.
Cent. Ann. Coop.

Final ASE
Ave. 39.47 10.62 14.02
Min. 0.50 0.00 0.00

Iteration
Ave. 9.5 121.4 9.7
Min. 3 58 3

Time (sec)
Ave. 24.5 288.4 17.6
Min. 10 100 7

Centralized: Procedure (centralized);
Annealed: \Centralized" improved

by simulated annealing;
Cooperative: Procedure (cooperative).

All the cases share some settings: there are four
targets, three sensors and 100 data samples. In
the cooperative method, sensors are grouped into
three: each group has a processor and two sensors,
and each sensor belongs to two groups.

Experiment results are summarized in Table 1.
Final (global) ASE's, the number of iteration and
execution time are measured for the three methods.
Final ASE's show that the cooperative method
gains almost the same quality of estimation as
the annealed one, and more than ten times faster.
Compared to the centralized one, the cooperative
method is faster by 1.3, which must be the result
of smaller amount of data per processor. Figure 3
shows estimation results in one example case.
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4 Extended Linear Track Es-

timation

Most researches on multitarget motion analysis in-
cluding our previous one address the case where
all the targets move toward �xed directions and
in constant velocities. We are currently extending
our method to address the case where targets move
toward varying directions and in varying velocities.

An extension of our linear estimation method de-
scribed in the previous section is very simple. The
extended method estimates short linear portions of
target tracks, then overlaps them for estimating en-
tire curve tracks. When estimation at the time t is
done with a data sequence of

(B(t� k); : : : ; B(t))

then the next estimation is done at the time t+�t
with a data sequence of

(B(t+�t� k); : : : ; B(t+�t))

Figure 4 shows an example of curve track esti-
mation. Two targets move along quadratic curves,
and the other two targets move along cubic curves,
where k = 100 and �t = 10.

We also evaluated robustness against sensing er-
rors. Errors of 1 { 8% on bearing data was arti�-
cially added, and estimation results were observed,
out of which the cases of 5% error and 8% error are
shown in Figure 5 for a single target.

5 Sequenced Location Esti-

mation

We have designed and are investigating another
new method. It is to estimate the locations of tar-
gets every time, and by sequencing them, estimates
arbitrary shapes of entire tracks. Therefore, this is
not track estimation but location estimation.

The estimation procedure can be outlined as be-
low.

1. Each processor collects bearing data from
three sensors: sensors of itself, left and right
neighbors. Let them be tagged with m, l and
r for explanation.
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2. A processor must determine the association
between bearings and targets. It is equivalent
to determine the association between datam,
datal and datar. Data is a set of bearings
(b1; : : : ; bn) where n is the number of targets.
The processor tries all the combination of bmi
and blj , b

l
j and brk, and brk and bmi .

3. Each processor computes possible locations of
a target as:

L12 = location estimated from bmi and blj ;
L23 = location estimated from blj and brk ;
L31 = location estimated from brk and bmi .

and computes:

D12 = distance between L12 and L23 ;
D23 = distance between L23 and L31 ;
D31 = distance between L31 and L12.

Then the processor determines the combina-
tion of i, j and k which minimizes deviation
(D12+D23+D31)=3, and estimates the loca-
tion of the target as (L12 + L23 + L31)=3.

4. Each processor exchanges its estimation re-
sult, target locations and deviations, with each
other. Then it chooses the best estimation in
the light of its sensor data. The system repeats
this loop until converged.

Figure 6 shows an example of location estimation
with the sensing error of 0% and 5%. As easily
seen, this method is very prone to sensing errors,
although it is very computationally e�cient.

6 Concluding Remarks

This report presented a new approach to the well-
known problem of multitarget motion analysis, and
showed decentralized cooperative estimation e�ec-
tive. More rigorous investigation for this approach
should be of further study, for example, regarding
the e�ect of occlusions and clutters.
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