TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING

IEEJ Trans 2007; 2: 402-404

Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/tee.20162

Letter

Exploration of Communication Models in the Design of Distributed
Embedded Systems

Kazutaka Kobayashi*, Non-Member
Takashi Shiraishi*, Non-Member
Nurul Azma Zakaria®, Non-Member
Ryosuke Yamasaki*, Non-Member
Norihiko Yoshida™®, Member
Shuji Narazaki**, Non-Member

Distributed embedded systems involve communication in various layers, and therefore their design is more
difficult than of single embedded systems. This paper presents how communication exploration can be done
in a design process of distributed embedded systems using an example of event-triggered and time-triggered
communication. A design process begins from abstract specification without assuming any communication
category, then explores the categories in a stepwise manner, followed by physical implementation synthesis.
This encourages stepwise decision making, component and framework reuse, and early stage verification. ©
2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Keywords: distributed embedded systems, network communication, model-driven architecture, stepwise refinement design

Received 27 November 2006

1. Introduction

Modern embedded systems often work in networks,
which comprise distributed embedded systems, as found
in vehicles, for example.

Embedded systems involve hardware and software,
and therefore hardware/software (HW/SW) integrated
design methodologies, such as System-level Design [1]
and HW/SW CoDesign [2], have been gradually put into
practice. Typical HW/SW integrated design proceeds as
shown in Fig. 1 [3]. It is a stepwise refinement process
from abstract specification to implementation.

Distributed embedded systems involve communication
in various layers, from bus connections to networks,
and therefore communication design is more important
and difficult than in single embedded systems. An
issue, from the network point of view, in the above
process when applied to design of distributed embedded

2 Correspondence to: Norihiko Yoshida, yoshida@ics.saitama-u.ac.jp.

* Graduate School of Science and Engineering, Saitama University,
Saitama 338-8570, Japan

** Faculty of Engineering, Nagasaki University, Nagasaki 852-8521,
Japan

systems is that communication is concerned mainly with
bus connections, and so communication exploration is
not separated from architecture exploration, in which
a suitable combination of modules is explored among
several possibilities to fix an architecture model.

This paper presents how communication exploration
can be done in a design process of distributed embedded
systems using an example of event-triggered and time-
triggered communication [4].

2. Event-triggered and Time-triggered
Communication

There are two major categories of network communi-
cation in distributed embedded systems: event-triggered
and time-triggered. Event-triggered communication is
flexible and appropriate for soft real-time systems. Time-
triggered communication, on the contrary, is determinis-
tic, in the sense that all instants of message transmission
are scheduled beforehand. This is suitable for applica-
tions in which the data traffic is of a periodic nature,
and ensures dependable hard real-time message delivery
which is necessary in safety-critical applications.

© 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

COMMUNICATION MODELS IN THE DESIGN OF DISTRIBUTED EMBEDDED SYSTEMS

Fig. 1 Design process for embedded systems

Architecture Exploration |

Communication Synthesis |

Implementation Refinement |

Both the above have two sub-categories: centralized
and decentralized. In centralized event-triggered/time-
triggered communication, a single arbiter/scheduler man-
ages the whole network. In decentralized event-triggered/
time-triggered communication, each module is responsi-
ble for arbitration/scheduling. The former is less expen-
sive and easier to implement, while the latter is faster
and more robust owing to the absence of a single point
prone to failures and load concentration.

For example, below are some protocols for in-vehicle
networks:

e CAN: decentralized event-triggered;
e LIN: centralized time-triggered;
e FlexRay: decentralized time-triggered.

3. Stepwise Exploration of Communication

In the conventional design process, we must select
which communication protocol to use at the beginning.
Once having selected any, we cannot switch to another,
even if it is found later that another is better. A com-
plex distributed embedded system may include several
categories of communication, which should be selected
depending on physical constraints; thus it is sometimes
difficult or impossible to select at the beginning. In addi-
tion, we cannot reuse a component or framework for
other systems based on any other protocols.

Consequently, following Model-driven Architecture
(MDA) discipline [5], which is now widely accepted in
Software Engineering, we investigate a design process
of communication that begins from abstract specification
without assuming any communication category and then
explores the categories in a stepwise manner followed by

Specification Model

| Module |4->< Channel ><->| Module |

Event-Triggered Communication Model

Module

Channel Module

Decentralized E-T Model

Time-Triggered Communication Model

| Module |<-)< Channel){-}l Module |

Centralized T-T Model Decentralized T-T Model

|_M10Ld. MAO Ld. |

Sch.

v

v

Physical Layer Ir'éplefmentation Model

Fig. 2 Stepwise exploration of communication models

Abstract Interface
- sendIDs [#]
- receivelDs
+ pointcut_send (sendIDs : int)
+ pointcut_receive (receivelDs : int) : double

<<interface>>
Event triggered

+send ()
+ receive ()

i

ECU

Fsend ()
+ receive ()

I
Abstract Channel
- data : double

+send ()
+ receive ()

joinpoint

+ joinpoint ()

ECU Abstract Interface

fr-send (out data : double]
[+ receive () : double|

- sendIDs [#]

- receivelDs [Time Triggered

+send ()

+ pointcut_send (sendIDs : int) el

+ pointcut_receive (receivelDs : int) : double

[receive] send

i+ Tecove doub\%

- send (oul_data: doute)

arbiter
~ prioritys]
+ arbitration ()

filter

(a) Event-Triggered
Communication Model

teceivelDs []
+ filtering ()

)

Abstract Channel

joinpoint

+ joinpoint () - data : double
+send ()
+receive ()

| |

receive send

| Timing Table [1+]—

(b) Time-Triggered
Communication Model

t+ receive () : doubl t+ send (out_data : double)|

+timing ()

Fig. 3 UML class diagrams of communication models

403

IEEJ Trans 2: 402-404 (2007)

K. KOBAYASHI ET AL.

physical implementation synthesis. Figure 2 shows the
result in outline. Models are actually described in UML,
and two examples, class diagrams of event-triggered
and time-triggered communication models, are shown
in Fig. 3, where ‘EUC’ (Electronic Control Unit) is an
embedded module, and ‘joinpoint’ is a tool class for
framework reuse.

At each model, a designer verifies its correctness, and
then selects which way to go, considering advantages of
each path such as presented in Section 2, on the basis
of some estimation or profiling that reflects requirements
and constraints. The designer makes a decision, not at
once at the beginning, but in a stepwise manner gradually
fixing details. Also, the designer verifies the system, not
at once after implementing it, but in a stepwise manner.

4. Related Works and Concluding Remarks

There is a research trend to apply UML and MDA
to HW/SW integrated design, which started a few
years ago (see Proc. 2006 Workshop on UML for SoC
Design in conjunction with ACM/IEEE 43th Design
Automation Conf.). However, there has been no study
on communication exploration yet.

Stepwise exploration encourages stepwise decision
making, component and framework reuse, and early
stage verification, all of which accelerate design pro-
cesses. This letter applies it to the design of distributed

404

embedded systems. This letter also contributes toward
integrated design of event-triggered and time-triggered
communication, which are used separately at present.

We have verified our approach by interpreting the
models and the design process in the SpecC modeling
language [3]. Our ongoing studies are: (i) interpreting
them in executable UML [5], (ii) formalizing semantics-
preserving transformation between models to build an
automatic CAD tool, and (iii) investigating some real-
world applications.

References

(1) Keutzer K, Malik S, Newton AR, Rabaey J, Sangiovanni-
Vincentelli A. System level design: orthogonalization of con-
cerns and platform-based design. IEEE Transactions 2000;
CAD19(12):1523-1543.

Balarin F, Chiodo M, Giusto P, Hsieh H, Jurecska A, Lavagno L,
Passerone C, Sangiovanni-Vincentelli A, Sentovich E, Suzuki K,
Tabbara B. Hardware-Software Co-Design of Embedded Systems.
Kluwer, Norwell, MA, USA, 1997.

Gajski DD, ZhuJ, Domer R, Gerstlauer A, Zhao S. SpecC:
Specification Language and Methodology. Kluwer, Norwell, MA,
USA, 2000.

Kobayashi K, Yamasaki R, Yoshida N, Narazaki S. Exploration
of communication specifications in system level design. IEICE
Technical Report 2006; SLDM-127:175-179 (in Japanese).
Mellor SJ, Scott K, Uhl A, Weise D. MDA Distilled: Principles of
Model-Driven Architecture. Addison-Wesley, Boston, MA, USA,
2004.

(@)

(€]

()

IEEJ Trans 2: 402-404 (2007)

