
Popularity-Based Content Replication
in Peer-to-Peer Networks

Yohei Kawasaki, Noriko Matsumoto, and Norihiko Yoshida

Department of Information and Computer Sciences,
Saitama University, Saitama 338-8570, Japan

{yohei, noriko, yoshida}@ss.ics.saitama-u.ac.jp

Abstract. Pure peer-to-peer (P2P) networks is widely used, however
they broadcast query packets, and cause excessive network traffic in par-
ticular. Addressing this issue, we propose a new strategy for content
replication which prioritizes popular and attracting contents. Our strat-
egy is based on replication adjustment, being cooperated with index
caching, as well as LRU-based content replacement, and a more effective
replica placement method than well-known probabilistic ones. We also
present some experiment results to show that our strategy is better than
other ones in regards to network traffic and storage consumption.

1 Introduction

In a P2P network, as contents are distributed to all the member nodes (peers),
we must consider mechanisms to search contents. Generally, the search mech-
anisms for P2P networks are classified into three groups. A centralized P2P
system such as Napster [1] has a central server which manages all the locations
(indices) of contents. A decentralized P2P system has no central server, and is
again classified into two categories. A decentralized unstructured system such as
Gnutella [2] has no specific structure in network topology, and use a flooding-
based query algorithm. A decentralized structured system such as Chord [3] has
a well-organized structure, and has a very efficient search mechanism using a
distributed hash table (DHT) on P2P network.

In centralized P2P systems, a large amount of queries cause a high load on
the central server, and the server may be a single point of failure. Decentral-
ized structured P2P systems require strictly-organized network topology which
is difficult to construct in reality. Both of them can search contents efficiently,
however, they have disadvantage as mentioned above. On the contrary, decen-
tralized unstructured P2P systems are easy to construct in reality, and fault-
tolerant. Therefore, they are widely used, although they have issues that the
number of query packets grows exponentially, and search areas are limited to
reachable nodes of query packets.

It is one of the effective improvement way for the issues of decentralized un-
structured P2P systems to distribute replicas of contents in a network [4, 5]. Some
researches about content replication treat all the contents equally for replication.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, pp. 436–443, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Popularity-Based Content Replication in Peer-to-Peer Networks 437

However, the popularity of a content (i.e. frequency of accesses to the content) is
not uniform. It must be more effective to put more replicas for popular objects
than unpopular ones.

This paper proposes a distributed replication mechanism for decentralized
unstructured P2P networks which considers content popularity, is scalable, and
is easy to implement. Section 2 summarizes related researches on content repli-
cation, and Section 3 proposes popularity-based content replication. Section 4
presents some experiment results and evaluation. Section 5 contains some con-
cluding remarks.

2 Content Replication

Content replication in P2P network generally provides decrease of packet hops
until a search succeeds, and improvement of search success rate. It also provides
decrease of network load, and realizes efficient search. These effects become ap-
parent in decentralized unstructured P2P systems in particular.

In an extreme case, allocating replicas of all contents to all nodes results in
the ideal result in which reference to any content is done at no network cost.
However, because a node has a limited storage resource, we cannot actually apply
this extreme replication.

Thus, in the content replication, it is important to decide the number and the
placements of replicas how many and where the replicas are allocated. There are
some strategies already proposed to decide these.

Owner Replication. Replicas is allocated only on the requester (i.e. the node
emitting a query) when the search succeeds. This strategy is simple and
needs the smallest cost, but it needs enough time for replicas to spread over
the network [5].

Path Replication. Replicas are allocated on all the nodes on the search path
from the requester to the holder (i.e. the node having the requested content).
Because one or more replications are allocated per search, a lot of storage
or network resources are needed, however, a content spreads easily [5].

Path Random Replication. In this strategy, each node on the search path
may or may not have a replica based on a pre-defined probability. We must
decide an appropriate allocation probability [6].

Random Replication. In this strategy, replicas of the same number as of the
nodes on the search path are allocated to randomly-chosen nodes in the
whole network. There is no distributed algorithm presented to choose the
nodes, therefore it is not certain whether the strategy can be implemented
without too much cost [5].

3 Popularity-Based Content Replication

It is reported that the “Power law” can generally be applied to web content
accesses [7]. There are a few contents which attract many accesses, while there
are many contents which attract only a few accesses. This fact must be applied
to content accesses in P2P networks as well.

438 Y. Kawasaki, N. Matsumoto, and N. Yoshida

Allocating more replicas of more popular contents brings improvement of
search success as a whole because popular contents are more often searched.
It must also benefit to reduction of network traffic because the number of hops
to reach a searched content becomes small. However, too many replicas causes
increase of the network traffic because many replicas are found by a single query,
and many “hit” packets are generated. At the same time, suppressing the num-
ber of replicas of unpopular contents brings reduction of storage consumption
at every node.

There are some replica placement strategies proposed as summarized above.
However, none of them considers content popularity. Therefore, these strategies
result in excessive network traffic to create a content replica for low popularity
contents (except for Owner Replication) and excessive storage consumption.

Square-Root Replication is one of a few exceptions, which considers content
popularity [4]. The number of replicas is determined proportional to the square
root of the access counts relative to other contents. This strategy is reported
to exhibit, in a rough (not an exact) simulation, significant reduction of whole
search traffic [5]. However, it would be necessary that any single node must have
knowledge on popularities of all the contents, which is impractical.

Consequently, we construct our replication strategy based on the following
design.

Requester

Holder

Index : Content O

over Threshold

1

2

3

o

o

o

Fig. 1. Delayed content replication

0 1 2 2 1 0 0 6hop

0 1 2 1 0 1 0 5hop

0 1 1 0 1 1 0 4hop

node

node with
content

Total

1

2

3

Requester Holder

Fig. 2. Replication on search path

(1) Decision of Replica Allocation. A simple method to decide replica
allocation is introduced which does not cause heavy network traffic.

Fig. 1 shows an overview of the method. A replica is allocated on the re-
quester like Owner Replication. Another will be allocated on the node halfway
between the requester and the holder, namely the most distant node from both
the requester and the holder (Fig. 1- 1©), however it is not placed at the mo-
ment of searching immediately. As shown below, the node evaluates popularity,
i.e. access rate, for that content, and decides whether placing a replica or not
eventually.

Fig. 2 shows the reason why the halfway node is the best to place a replica.
Sum of the number of hops is minimized if a replica is placed on the node halfway
on the search path. This is more effective than probabilistic allocation.

(2) Provisional Replica Placement. A replica is not placed immediately at
the halfway node. If the replica is never accessed afterward, it is just a waste

Popularity-Based Content Replication in Peer-to-Peer Networks 439

of copying cost and storage. Instead, only an index of the content, i.e. a pair of
the search key and the content location, is initially placed (Fig. 1- 2©). The size
of an index is much smaller than that of a content, therefore the cost of keeping
an index is much smaller that the one of copying and storing the content.

The node has an index containing two content locations of both the holder
and the requester, and it replies either of these locations in an alternate (round-
robin) fashion to a query. Accesses to the content are dispersed in this way.

The index not only contributes to the efficient search, but also indicates the
potential location of the replica. This cooperation of indexing and content repli-
cation is the major novelty of this research.

The node counts the number of references to each index it has, and when the
number exceeds a certain threshold, a replica of the content is placed at this
moment (Fig. 1- 3©).

(3) Replacement of Replication. Each node has limited capacity of storage,
and when its storage is saturated, it decides which replicas to keep according to
their popularities. When a new content or replica is added to the node whose
storage is full, a replica is discarded in a LRU (Least Recently Used) manner.

4 Experiments and Evaluation

To verify the advantages of our strategy, we present some results of experiments
using a simulator for virtual P2P networks. Table 1 summarizes parameter set-
tings for the experiments.

Table 1. Simulation settings

Number of nodes 2000
TTL of query packet 5
Initial max number of contents 60
Capacity of storage 100
Threshold of replication 15

Table 2. Popularities vs. contents disposition

popularity request rate (%) contents
(Low) 1 5 2500

2 10 1000
3 20 400
4 25 150

(High) 5 40 50

Settings for Contents and Search. We put at each node some contents ran-
domly up to 60 in the beginning. These initial contents will not be discarded
even if the node’s storage is full. We allow each node to have up to 1,000
indices, and to discard indices in a FIFO (First In First Out) manner when
the index capacity overflows.
We prepare 4,100 contents as a whole, each of which has a popularity level
shown in Table 2. This is to follow the Power-Law described in 3.
Our simulator selects a node randomly from 2,000 nodes per trial, and makes
it search a content. We tried 100,000 trials in every experiment. The result
figures below show transition at every 2,000 trials.

440 Y. Kawasaki, N. Matsumoto, and N. Yoshida

Settings for Network Topologies. It is reported that actual structures of
P2P network topology have the nature of Power-Law [8]. In fact, a small
number of nodes has many links, and most nodes has only a few links. There-
fore, we follow such network topology especially in experiments described in
4.2. The Power-Law Random (PLR) topology used in the experiments is
the random network in which the number of links of each node follows the
Power-Law, and connections between the nodes are random.

4.1 Effect of Each Factor

Our strategy consists of replica allocation which cooperates with index alloca-
tion, and the LRU-based replacement of replicas. Hence, to clarify each effect,
we compare four cases: (1) Index OFF - FIFO, (2) Index OFF - LRU, (3) Index
ON - FIFO, and (4) Index ON - LRU. “Index OFF” means not allocating an
index but a replica immediately. In this experiment, we simplify the network
composition in which each node randomly connects with 2 to 4 neighbors.

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ac

ke
ts

Query Cycle

Index OFF, FIFO
Index OFF, LRU
Index ON, FIFO
Index ON, LRU

Fig. 3. Transitions of total packets

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

es

Query Cycle

Index OFF, FIFO
Index OFF, LRU
Index ON, FIFO
Index ON, LRU

Fig. 4. Max. number of content delivery

Fig. 3 shows transitions of the total number of packets, i.e. sum of query
packets and hit packets. (4) shows identical result as (3), because there is no
saturation of storages in this experiment. “Index ON” brings delayed replica
placement, which suppresses storage saturation. Comparing (1) and (3), or (2)
and (4), we can conclude that cooperation with indexing reduces the network
traffic significantly. Comparing (1) and (2), LRU-based replacement is also ef-
fective when storage saturation occurs.

Fig. 4 shows transitions of the maximum number of content deliveries. If this
value is high, it means that accesses for a content are concentrated to a single
node. Again, (4) shows identical result as (3). Comparing (1) and (3), or (2)
and (4), accesses are dispersed by cooperation of indexing, and by round-robin
handling of queries.

We also verify, although not apparent in the figure, that (3) (and (4)) shows
the highest success rate of search out of the four cases, and the total number of
content delivery is the highest.

Popularity-Based Content Replication in Peer-to-Peer Networks 441

4.2 Comparisons with Other Strategies

Next, we compare our strategy with other related strategies: (1) Our strategy
(Proposal), (2) Owner Replication (Owner), (3) Path Replication (Path), and
(4) Path Random Replication in which the allocation probability to each node
is 10% (Path Random). The network composition we use in these experiments
are the above-mentioned PLR topology.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ac

ke
ts

Query Cycle

Proposal
Owner

Path
Path Random(10%)

Fig. 5. Transitions of total packets

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

U
til

iz
at

io
n

R
at

io
 [%

]

Query Cycle

Proposal
Owner

Path
Path Random(10%)

Fig. 6. Transitions of storage utilization

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ro

ba
bi

lit
y

[%
]

Query Cycle

Proposal
Owner

Path
Path Random(10%)

Fig. 7. Transitions of search success ratio

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

U
til

iz
at

io
n

R
at

io
 [%

]

Query Cycle

Expanding Ring
Flooding

Fig. 8. Flooding vs. expanding ring

Fig. 5 shows transitions of the total number of packets of all the strategies.
Only our strategy shows the steep decline from the beginning, while the others
do not.

Actually, all the strategies show declines when applied to networks of ran-
dom topology. Therefore, the results shown in this figure must be affected by
the characteristic of PLR topology. In the PLR topology, most packets tend to
concentrate on hub nodes (i.e. nodes with many links), and our LRU-based re-
placement of replicas occurs more often on them. In the other strategies, search
success ratio on the hubs gets lower, and query packets tend to spread much
wider.

In this figure, Path Replication (“Path”) shows increase of traffic. We in-
vestigated and found that many “hit” packets occupy the network which are

442 Y. Kawasaki, N. Matsumoto, and N. Yoshida

generated by too many replicas. In fact, about 30% of total packets are “hit”
packets.

Fig. 6 shows transitions of the consumption ratio of all the node storages. Our
strategy shows the lowest ratio, therefore we can conclude ours achieves good
performance in regard to both network traffic and storage consumption.

Fig. 7 shows transitions of search success ratio. Our strategy shows the best,
that implies ours suppresses flooding of query packets.

4.3 Using Expanding Ring for Search

The flooding-based search algorithm used in decentralized unstructured P2Ps
spreads query packets in the networks, and causes heavy network traffic. One of
the proposals addressing this issue is “Expanding Ring”, which expands search
area gradually by incrementally increasing TTL (time-to-live) [5]. Here we show
comparison of plain flooding and expanding ring when applied in cooperation
with our strategy.

Fig. 8 shows transitions of the total number of packets under plain flooding
and expanding ring. Expanding ring brings lower traffic from the beginning, and
it is effective in particular at the beginning where replicas are not so many yet.
However, we observe that using expanding ring, spreading of replicas becomes
slow, and search success rate decreases, because searches tend to succeed within
a small area.

5 Conclusions and Future Work

This paper focuses on content replication in decentralized unstructured P2P
networks for the purpose of reduction of excessive traffic and improvement of
search efficiency, proposes a strategy which makes cooperative use of indexing
and content replication.

Our strategy is composed mainly of controlled (or delayed) content replication
which cooperates with index allocation. Additionally, it implements LRU-based
replica replacement, and a very simple but efficient method to decide locations of
replicas. We showed advantages of our strategy by several simulated experiments.
Our strategy achieved more efficient search and lower network traffic than other
strategies.

Future works are as follows. First, a threshold of reference counts for switching
from an index to a replica placement must be appropriately determined. Sec-
ond, other P2P network topologies must be examined as well. Third, real-world
experiments must be performed.

Acknowledgments

This research was supported in part by JSPS in Japan under Grants-in-Aid for
Scientific Research (B) 17300012, and by MEXT in Japan under Grants-in-Aid
for Exploratory Research 17650011.

Popularity-Based Content Replication in Peer-to-Peer Networks 443

References

1. Napster website, http://www.napster.com/.
2. Gnutella website, http://www.gnutella.com/.
3. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications”, Proc. ACM SIG-
COMM 2001, 2001.

4. E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-to-Peer Net-
works”, Proc. ACM SIGCOMM 2002, 2002.

5. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Un-
strctured Peer-to-Peer Networks”, Proc. 16th ACM Int’l Conf. on Supercomputing,
2002.

6. D. Maruta, H. Yamamoto, Y. Oie, “Replication Strategies to Enable Storage Load
Balancing in P2P Networks” (in Japanese), IEICE Technical Report, NS2003-319,
pp.131–136, 2004.

7. S. Sato, K. Kazama, and S. Shimizu, http://www.ingrid.org/w3conf-japan/97/sato
/paper.html (in Japanese).

8. L. A. Adamic, R. M. Lukose, A. R. Puniyani and B. A. Huberman, “Search in
Power-Law Networks”, Physical Review E, Vol.64, pp.46135–46143, 2001.

	Introduction
	Content Replication
	Popularity-Based Content Replication
	Experiments and Evaluation
	Effect of Each Factor
	Comparisons with Other Strategies
	Using Expanding Ring for Search

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

