
Abstract

Some OO extensions to HDL’s, such as VHDL and SFL,
have been proposed. However, theoretical researches have
revealed a problem of inheritance anomaly (IA) which
arises when inheritance is applied to concurrent systems.
Hardware systems are concurrent systems, therefore the IA
problem is inevitable also in the OO design of hardware
systems. In this paper, we investigate a certain class of the
IA problem in OO extensions to VHDL, and proposes a
framework to avoid it.

1. Introduction

The object-oriented (OO) paradigm is now indispens-
able for software design and development. Likewise, it is
no doubt that the paradigm will be indispensable also for
hardware design, hardware/software co-design and system
level design in the near future. Consequently, some OO
extensions to HDL’s, such as VHDL and SFL, have been
proposed [1-9].

Inheritance is one of the fundamental features of the
OO paradigm. It enables programmers to incrementally
add properties to objects, and therefore facilitates reuse of
models and components. However, theoretical researches
have revealed a difficult problem which arises when inher-
itance is applied to concurrent systems. Additional
properties of a subclass may cause undesirable re-defini-
tions of the existing properties in the superclass. Instead on
being able to incrementally add properties, the programmer
may be required to re-define some (or, in the worst case,
all) inherited properties, therefore the benefits of inherit-
ance are lost. This problem is called inheritance anomaly
(IA) [10,11].

Hardware systems are concurrent systems, therefore the
IA problem is inevitable also in the OO design of hardware
systems. Among researches on OO extensions to HDL’s,
Schumacher et al. [7] and we [8,9] studied this problem. In

this paper, we investigate a framework to avoid the IA
problem in OO extensions to VHDL.

2. OO Extensions to HDL’s

Among HDL’s, VHDL is the most vigorously
researched towards OO extensions [1-7]. OO-VHDL
Study Group has already been organized under IEEE
DASC since 1993. As VHDL is a “big” language, propos-
als for OO extensions to VHDL have been categorized into:

• Type-based (or record-based) extensions,
• Entity-based extensions,
• Abstract class extension.

Among them, Ashenden is proposing SUAVE, a type-
based (Ada95-like) OO extension to VHDL, incorporating
some communication abstraction [4]. Nebel et al. is pro-
posing a class-based OO extension, Objective VHDL
[5,6,7]. These two are now considered as prospective can-
didates for future IEEE standard.

There has been no attempt, as far as we know, towards
OO extensions to Verilog-HDL. We studied an OO exten-
sion to yet another and very simple HDL, SFL [8].

Below are very simple example programs in SUAVE
and Objective VHDL. Both define an object class for a
counter. The SUAVE example defines an active object
in the sense that the object decides by itself how to respond
to inputs, while the Objective VHDL example defines a
passive object in the sense that the object simply responds
to procedure calls.

[SUAVE]
entity counter is
 generic (type count_type is (<>));
 port (clk : in bit; data : out
count_type);
end entity counter;

architecture behavioral of counter is
begin

Towards Object-Oriented Extensions to VHDL
for Effective Reuse of Models and Components

Toshiomi Moriki
Central Research Laboratory

Hitachi, Ltd.
Kokubunji, Tokyo 185-8601, Japan

t-moriki@crl.hitachi.co.jp

Norihiko Yoshida
Department of Computer and Information Sciences

Nagasaki University
Nagasaki 852-8521, Japan

yoshida@cis.nagasaki-u.ac.jp

 count_behavior : process is
 variable count :
 count_type := count_type’low;
 begin
 data <= count;
 wait until clk = ’1’;
 if count = count_type’high then
 count := count_type’low;
 else
 count := count_type’succ(count);
 end if;
 end process count_behavior;
end architecture behavioral;

[Objective VHDL]

type counter is class
 class attribute value: integer
 function status return integer;
 for signal, variable
 procedure count_up;
 procedure reset;
 procedure load (i: integer);
 end for;
end class counter;

type counter is class body
 function status return integer is
 begin
 return value;
 end;
 for signal, variable
 procedure count_up is
 begin
 load (value + 1);
 end;
 procedure reset is
 begin
 load (0);
 end;
 end for;
 for signal
 procedure load (i: integer) is
 begin
 value <= i;
 end;
 end for;
 for variable
 procedure load (i: integer) is
 begin
 value := i;
 end;
 end for;
end class body counter;

3. Inheritance Anomaly

Now we summarize researches on the problem of inher-

itance anomalies (IA’s) briefly. Matsuoka et al.
investigated the problem in single-thread concurrent
objects [10,11], and Thomas investigated in multi-thread
concurrent objects [12]. Matsuoka et al. introduced some
typical classes of IA’s such as:

• State Partitioning,
• History-Only Sensitiveness,
• State Modification;

and also introduced a set of standard benchmark exam-
ples using programs of bounded buffers. Almost all the
researches thereafter aimed to avoid the IA’s in these
benchmarks. However, the problem is still only vaguely
defined. There has been no formal proof yet that the
classes are exhaustive (there could be other undiscovered
types of IA’s). Some formal treatment was attempted
recently [13].

The cause of the IA problem is, in short, that the unit of
inheritance, i.e. a method, contains codes for synchroniza-
tions and codes for behaviors together. Therefore, the most
promising solution to avoid the problem is to divide the
unit of inheritance into finer something than the method.
Simply dividing a method into finer methods cannot be the
solution in most cases, because a method is also the atomic
execution unit (a method runs in a mutually exclusive man-
ner), and dividing the method breaks the atomicity. Instead
of method-based inheritance, there have been some propos-
als of new OO language constructs for inheriting codes for
synchronizations and codes for behaviors separately. From
more general standpoint of views, some frameworks for
separation of different aspects of codes have also been pro-
posed such as aspect-oriented programming [14].

It must be mentioned, however, that none of widely-
used OO languages with concurrency, Java for example,
provides yet any mechanism to avoid IA’s. The new lan-
guage constructs for avoiding IA’s are often complicated,
and may degrade programmer-friendliness of the lan-
guages. The two essential concern in designing
programming languages in general are expressiveness and
programmer-friendliness, which are sometimes conflicting
mutually.

4. Inheritance Anomaly in OO-VHDL

Hardware systems are concurrent systems, therefore the
inheritance anomaly problem is inevitable in the OO design
of hardware systems. Schumacher et al. studied synchroni-
zation-related IA in their OO extension [7], as well as
analyzing IA in Ada95 [15], and claimed that their OO
extension, as is, solved synchronization-related IA’s. Their
investigation for avoiding IA’s followed Ferenczi’s frame-
work, which uses nested conditional critical regions [16].

Now we investigate a possibility of another kind of IA
in OO extensions to VHDL, especially found in active

object definitions. It relates to active dispatching within
process definitions. Below is a very simple (in fact, triv-
ial) example of a resettable_counter, following the
counter example shown above. Here we use the SUAVE
framework, however the situation is the same also in the
Objective VHDL framework.

entity resettable_counter is
 generic (type count_type is (<>));
 port (clk : in bit; reset : in bit;
 data : out count_type);
end entity resettable_counter;

architecture behavioral of
resettable_counter is
begin
 resettable_count_behavior : process is
 variable count
 count_type := count_type’low;
 begin
 data <= count;
 wait until reset = ‘1’ or clk = ’1’;
 if reset = ‘1’ then
 count := count_type’low;
 elsif count = count_type’high then
 count := count_type’low;
 else
 count := count_type’succ(count);
 end if;
 end process resettable_count_behavior;
end architecture behavioral;

The program codes presented in the plain font is exactly
the same as the definition of a counter, while the codes
presented in the bold font is to add functionality for
reset. Therefore, we would be happy if we could define
the resettable_counter as a derived object class of
the counter using inheritance, just adding the functional-
ity for reset, as something like:

entity resettable_counter
 extends counter with
 port (reset : in bit);
end entity resettable_counter;

architecture behavioral of
resettable_counter extends counter with
begin
 count_behavior : process is
 begin
 wait until reset = ‘1’;
 if reset = ‘1’ then
 count := count_type’low;
 end if;
 end process count_behavior;
end architecture behavioral;

We can do it for the entity definition; however, we
cannot do it for the architecture definition actually.
We must redefine the whole process definition. It is
because the process statement is indivisible. This is
considered as a kind of IA.

5. Proposal for New Language Constructs

Now we introduce new language constructs for avoid-
ing such kind of IA’s. The principle behind is to re-
organize the wait statement and the if statement into the
guarded-command style of “wait for a condition to stand,
and then do something relevant”.

The language constructs are combination of: (1) an
extended wait statement, (2) an alternation sub-pro-
gram, and (3) before/after prefixes. Before describing
each, we present an example using the new constructs (in
the bold font) to show an outline of our proposal.

architecture behavioral of counter is
begin
 count_behavior : process is
 variable count :
 count_type := count_type’low;
 begin
 data <= count;
 count_behavior_switch(count);
 end process count_behavior;

 alternation count_behavior_switch
 (count : inout count_type) is
 begin
 wait until clk = ’1’ do
 if count = count_type’high then
 count := count_type’low;
 else
 count := count_type’succ(count);
 end if;
 end wait;
 end alternation count_behavior_switch;
end architecture behavioral;

architecture behavioral of
resettable_counter extends counter with
begin
 alternation count_behavior_switch
 (count : inout count_type) is
 before begin
 wait until reset = ‘1’ do
 count := count_type’low;
 end wait;
 end alternation count_behavior_switch;
end architecture behavioral;

Here, the architecture of the resettable_counter
only defines the functionality for reset, as we desire.
(1) Extended wait statement: A compound statement

“wait <condition> do <statement> end;” is semanti-
cally equivalent to “wait <condition> ; if <condi-
tion> then <statement> end;”. The statement is exe-
cutable (and the entire compound statement is said to be
executable) when the condition is fulfilled.
(2) Alternation sub-program: An alternation
sub-program is defined just like a procedure or a
function. An executable statement in the sub-program
is chosen arbitrarily and executed. If there is no executable
statement at the moment, a system waits until any state-
ment is executable. The order of statements within an
alternation sub-program is meaningless.
(3) Before/after prefixes: These are used with inherit-
ance of sub-programs. If no prefix is given in an inherited
class (super class or base class) nor an inheriting class
(sub-class or derived class), the sub-class definition
replaces the super class definition. If a prefix is given, the
sub-class definition is added before or after the super class
definition. A before prefix and an after prefix, when
applied to an alternation sub-program, have the same
effect, because the order of statements is meaningless.

The extended wait statement and the alternation
sub-program together construct a guarded command struc-
ture, which are found in many concurrent programming
languages including Ada. The before/after prefixes
customize inheritance; they were first introduced in the lan-
guage “Flavors” [17], and found in some multiple-
inheritance-based OO programming languages. All these
working together enable us to inherit, override or add
guarded commands for active dispatching.

The above definition of resettable_counter is a
sub-class of counter. When compiled, it is extended as:

architecture behavioral of
resettable_counter is
begin
 count_behavior : process is
 variable count
 : count_type := count_type’low;
 begin
 data <= count;
 count_behavior_switch(count);
 end process count_behavior;

 alternation count_behavior_switch
 (count : inout count_type) is
 begin
 wait until reset = ‘1’ do
 count := count_type’low;
 end wait;
 wait until clk = ’1’ do
 if count = count_type’high then
 count := count_type’low;
 else
 count := count_type’succ(count);

 end if;
 end wait;
 end alternation count_behavior_switch;
end architecture behavioral;

The body of count_behavior_switch is trans-
lated into a conventional VHDL definition and unfolded
within the process definition as:

 count_behavior : process is
 variable count :
 count_type := count_type’low;
 begin
 data <= count;
 wait until reset = ‘1’ or clk = ’1’;
 if reset = ‘1’ then
 count := count_type’low;
 elsif clk = ’1’ then
 if count = count_type’high then
 count := count_type’low;
 else
 count := count_type’succ(count);
 end if;
 end if;
 end process count_behavior;

This is semantically equivalent to the definition of the
resettable_counter shown in the “Inheritance
Anomaly in OO-VHDL” section.

6. Concluding Remarks

We proposed new language constructs for avoiding a
certain kind of inheritance anomalies in object-oriented
extensions to VHDL. Objects in OO-VHDL is either active
or passive. The former includes a definition for active dis-
patch mechanism within itself, and decides by itself how to
respond against the input. The latter is composed of some
procedure (method) definitions, and simply responds to
procedure calls. Our proposal is concerned with inherit-
ance of dispatch mechanisms, typically constructed by
wait, process and if statements in VHDL. Such
active dispatch mechanisms are widely found in many
VHDL programs, and our proposal is effective for OO
extensions to such programs.

VHDL is already a complicated language. We could
introduce more effective, yet more complex language con-
structs, or change the VHDL syntax and semantics
drastically; however, so as not to make VHDL even more
complicated, we considered simplicity as the first impor-
tance. In our humble opinion, given any solution proposal
for IA’s, no matter how sophisticated, we could make a
counter-example (sometimes artificial and trivial) against
it, because there has been no formal definition of IA’s yet.

We have been aiming not at a perfect solution but at a prac-
tical, or in other words, simple and modest solution.

We do not intend at all to claim that SUAVE and Objec-
tive VHDL are incomplete or imperfect. We do not claim
that our proposal solves all kinds of IA either. Our pro-
posal solves some kind of IA, and can work additionally
with the OO extension frameworks of SUAVE or Objective
VHDL. Also, our proposal should not be able to apply
only to VHDL. It should ideally be able to apply to OO
extensions to any HDL’s and SLDL’s. We are now investi-
gating a framework of OO extensions to Verilog-HDL.

Acknowledgments

This research is partly supported by STARC (Program
No. 997). We thank Drs. T. Kozawa, O. Matsumura, N.
Hirano and K. Wakabayashi for valuable information and
fruitful discussions.

References

[1] S. Swamy, A. Molin, and B. Covnot, “OO-VHDL:
Object-Oriented Extensions to VHDL”, IEEE Computer,
28:10, 18-26 (1995)

[2] J. Benzakki and B. Djafri, “Object Oriented Extensions to
VHDL – The LaMI proposal”, Proc, CHDL’97 (1997)

[3] P. J. Ashenden and P. A. Wilsey, “Principles for Language
Extension to VHDL to Support High-Level Modeling”,
TR-03/97, Dept. of Computer Science, Univ. of Adelaide
(1997); also as TR-204/05/97/ECECS, Univ. of Cincin-
nati (1997)

[4] P. J. Ashenden, P. A. Wilsey and D. E. Martin, “SUAVE:
Extending VHDL to Improve Data Modeling Support”,
IEEE Design & Test of Computers, 15:2, 34-44 (1998)

[5] M. Radetzki, W. Putzke-Röming and W. Nebel, “A Uni-
fied Approach to Object-Oriented VHDL”, J. of
Information Science and Engineering, 14, 523-545 (1998)

[6] M. Radetzki, W. Putzke-Röming and W. Nebel, “Objec-
tive VHDL: Tools and Applications”, Proc. FDL’98, 191-
200 (1998)

[7] G. Schumacher and W. Nebel, “Object-Oriented Model-
ling of Parallel Hardware Systems”, Proc. DATE ’98
(Design, Automation and Test in Europe), 234-241 (1998)

[8] T. Inuo and N. Yoshida, “SFL++ : Object-Oriented Exten-
sion for SFL” (in Japanese), Proc. 9th Parthenon
Workshop, 13-20 (1996)

[9] T. Moriki and N. Yoshida, “Inheritance Anomaly in
Object-Oriented Extensions to Hardware Description
Language VHDL” (in Japanese), Record of 1998 Joint
Conf. of Electrical and Electronics Engineers in Kyushu
(1998)

[10] S. Matsuoka and A. Yonezawa, “Analysis of Inheritance
Anomaly in Object-Oriented Concurrent Programming
Language”, Research Directions in Concurrent Object-
Oriented Programming (G. Agha, P. Wegner and A. Yon-

ezawa, eds.), 107-150 (1993)
[11] S. Matsuoka, K. Taura and A. Yonezawa, “Highly Effi-

cient and Encapsulated Re-Use of Synchronization Code
in Concurrent Object-Oriented Languages”, Proc. ACM
OOPSLA ’93, 109-126 (1993)

[12] L. Thomas, “Inheritance Anomaly in True Concurrent
Object Oriented Languages: A Proposal”, Proc. IEEE
TENCON ’94, 541-545 (1994)

[13] L. Crnogorac, A. S. Rao and K. Ramamohanarao, “Inher-
itance Anomaly - A Formal Treatment”, Proc. 2nd Int’l
Conf. on the Formal Methods in Open Object Distributed
Systems, 319-334 (1997)

[14] http://www.parc.xerox.com/spl/projects/aop/
[15] G. Schumacher and W. Nebel, “How to Avoid the Inherit-

ance Anomaly in Ada”, Proc. Ada-Europe ’98 (1998)
[16] S. Ferenczi, “Guarded Methods vs. Inheritance Anomaly -

Inheritance Anomaly Solved by Nested Guarded Method
Calls”, ACM SIGPLAN Notices, 30:2 (1995)

[17] D. A. Moon, “Object-Oriented Programming in Flavors”,
Proc. OOPSLA ’86, 1-8 (1986)

