
Embedded System Design Based on Aspect-Oriented
Executable UML

AKIRA TERUYA*, EIICHIRO IWATA*, MASAHITO SUGAI*, MASAHIRO KIMURA**
NURUL AZMA ZAKARIA*, NORIKO MATSUMOTO*, NORIHIKO YOSHIDA*

* Saitama University
Department of Information and Computer Sciences

255 Shimo-Ohkubo, Saitama 338-8570, JAPAN
{akira, eiichiro, masahito, azma, noriko, yoshida}@ss.ics.saitama-u.ac.jp

** Toshiba Solutions Corp.
Musashidai, Fuchu 183-8532, Japan
Kimura.Masahiro@toshiba-sol.co.jp

Abstract: System-level design methodology is one of the design paradigm for embedded systems. As embed-
ded systems are getting much larger and more complex recently, the research to improve design productivity of
system-level design is being required. In order to solve this issue, we have proposed a methodology of language
independent system-level design using Executable UML (xUML) and a scheme for the procedure of stepwise
refinement by the refactoring technique. However, the refactoring rules are informal and sometimes ambiguous
because they are defined in a natural language. Consequently, we are aiming at formalizing the stepwise refinement
procedure based on refactoring to automatize it. In this paper, we propose a formalization scheme based on the
aspect-oriented technique to the system-level design in xUML.

Keywords:Aspect-oriented design, Executable UML, Refactoring, Embedded systems

1 Introduction
The methodology of system-level design, a stepwise
refinement [1], is one of the design paradigm for em-
bedded systems. This aims at deriving interactively
and cooperatively hardware implementation and soft-
ware implementation from an abstract specification.

As embedded systems are getting much larger and
more complex recently, system level design method-
ologies using UML (Unified Modeling Language) are
being researched actively to improve design produc-
tivity. However, UML does not have any testing
mechanisms. When a designer specifies a model of
a system in UML, she/he must re-describe it in a
system-level design language to verify its correctness.
That is, a designer can use UML only in the first stage
in specification, and in the rest of the stepwise refine-
ment process, she/he must use a concrete program-
ming language.

In order to reduce this kind of dependence on the
design language, we have proposed a methodology
of language independent system-level design [2] us-
ing Executable UML (xUML) [3]. Executable UML
is based on Model Driven Architecture (MDA) [4],
and has testing mechanisms. In our proposal, de-
signers can verify models and consistently represent
the whole process in stepwise refinement based on

UML

SpecC

SpecC

SpecC

SpecC

The system level design
using UML

xUML

xUML

xUML

xUML

xUML

SpecC

The system level design
using xUML

System specification

Specification Model

Implementation Model

Architecture Model

Communication Model

The model of each abstraction
level in system level design

Figure 1: System-level design by using xUML

xUML(Figure 1).
In system-level design, design productivity and

quality still rely on designers’ skills and experiences.
To address this issue, we proposed a formalization
scheme for the procedure of stepwise refinement by
the refactoring [5] technique [2]. Refactoring is a re-
structuring procedure of system structures, while pre-
serving its functions. However, this technique still has
an issue that refactoring rules are informal and some-
times ambiguous because they are defined in a natural
language.

Consequently, we are aiming at formalizing the
stepwise refinement procedure based on refactoring

to automatize it. In this paper, we propose a for-
malization scheme based on the aspect-oriented tech-
nique [6] to the system-level design in xUML. In
particular, we formalize the model transformation of
xUML using aspects, and define the refactoring rules
in aspects.

This paper is organized as follows. Section 2 and
3 summarize Executable UML and Aspect-Oriented
Programming respectively. Then, Section 4 presents
our proposal, Section 5 describes some details on as-
pects for xUML model transformation, and Section 6
shows some experiment results. Section 7 overviews
related works, and Section 8 contains concluding re-
marks.

2 Executable UML
Executable UML(xUML) is a profile of UML which
enables rigorous definition of system behaviors.
xUML comprises of an action language based on Ac-
tion Semantics [7] and testing mechanisms of a model.
A designer describes a model using the class chart, the
state-machine chart, and the action language. Since
the defined model is executable, we can test and verfy
its correctness.

In this research, we use iUML [8] as a tool for
xUML modeling.

3 Aspect-Oriented Programming
Aspect-Oriented Programing (AOP) was proposed as
a technique for improving separation of crosscutting
concerns in software systems.

A crosscutting concern is a procedure whose
codes are scattered among several objects in Object-
Oriented Programming (OOP), such as logging, syn-
chronization, etc. Crosscutting concerns is difficult
to modularize in OOP, and they make maintenance of
program and recycling difficult.

Thus, AOP attempts to solve this problem by al-
lowing a programmer to express crosscutting concerns
in single modules called “aspects”. The mechanism of
AOP is expressed in Join Point Model (JPM) which is
composed of join points, advices, and pointcuts.

A join point is a well-defined location in a pro-
gram execution (e.g. method calls, the execution of
an exception handler block). An advice is a code of a
crosscutting concern that should run at each join point
in pointcuts. A pointcut specifies how to pick out a set
of join points based on a certain criterion.

With AOP, we begin programming by implement-
ing codes for classes using an OO language (e.g.,
Java), and then we separately define codes for as-
pects. Finally, both the code for classes and aspects

Weaver

Compiler

Source Code Aspect

Executable

Figure 2: Aspect weaving

are combined into another code using an “Aspect
Weaver”(Figure 2). As a result, a single aspect can
contribute to the implementation of a number of meth-
ods, modules, or objects, increasing both reusability
and maintainability of the code.

4 Outline of Our Methodology
This section presents an overview of our methodol-
ogy. Our goal is to describe strict rules for the step-
wise refinement procedure for the system-level design
in xUML, based on refactoring defined in aspects, and
to automate the work of stepwise refinement.

Therefore, we propose the method of the proce-
dure formulation based on aspect oriented techniques
in this research. The basic idea of this method is as
follows.

(1) Defining operations for xUML model transfor-
mation in aspects

One operation for model transformation of
xUML (e.g., addition of the class, addition of
the method, etc) is described as an aspect (Fig-
ure 3-(a)). As a result, the model transformation
procedure (equal to the stepwise refinement pro-
cedure) can be defined in aspects (Figure 3-(b)).

(2) Automating the work of model transformation

By using an aspect weaver to weave aspects to
an xUML model, the work of model transforma-
tion can be automated.

(3) Aggregating aspects into hierarchies

As mentioned above, the stepwise refinement
procedure can be expressed in aspects. So, the
mechanism of aggregating the aspects into a hier-
archy is necessary in order to improve modular-
ity, readability, and reusability of the stepwise re-
finement procedure (Figure 3-(c)). We apply an
aggregating technique of aspects for UML (not
xUML) [9] to xUML.

Weaver
xUML Model

(Before)

xUML Model'
(After)

Conversion Sequential Weaving
Aspect 1

Aspect 2

Aspect N

The stepwise
refinement procedure

Weaver
xUML Model

(Before)

xUML Model'
(After)

AspectWeavingConversion
（a）Weaving of a simple aspect

あ

（b）Weaving of multi aspects

Weaver

xUML Model
(Before)

xUML Model'
(After)

Conversion

Aspect 1

Procedure
A

Procedure
A

The stepwise
refinement procedure

（c）Grouping and hierarchizing aspects

Aspect 2

Aspect 1

Aspect N

Aspect 1

Aspect N

Figure 3: The model conversion using the aspect

By realizing the above idea, the stepwise refine-
ment procedure for the system-level design in xUML
can be described strictly and the reuse of the proce-
dure becomes easy. As a result, the improvement of
the design efficiency can be expected.

5 Aspects for xUML Model Trans-
formation

This section explains how to realize aspects which can
apply to xUML models.

5.1 Join Point and Advice for xUML Model
Transformation

In order to realize the aspects that can be applied to an
xUML model, it is necessary to define the Join Point
Model corresponding to the xUML model.

So, we have categolized join points required for
the model transformation out of components in xUML
models (the class chart, the state-machine chart, and
the action language). And, we have defined the type
of an advice applied in each join point (Table 1). The
definition of type of the advices is based on the opera-
tion in the model transformation. As a result, design-
ers can define xUML model transformation processes
in a formalized and structured manner using aspects.

Table 1: A list of xUML join point and available ad-
vices

Type of join point Available type of advices

domain
add-class
remove-class
add-association

class

add-attribute
add-operation
add-state
add-signal
add-transition
rename

attribute remove-attribute

operation
remove-operation
add-parameter
add-action

state
remove-state
add-action
rename

transition
remove-transition
replace-transition-signal

signal
remove-signal
add-parameter
rename

action
remove-action
replace-action

association remove-acsociation

prameter
remove-parameter
replace-transition-signal

5.2 The description form of an aspect

We have decided to use XML to describe an aspect,
because XML has an advantage that it is an inter-
naitonal standard, and its structure of tags and at-
tributes makes desiging and constructing an aspect
weaver easy. The description form of an aspect is as
follows.

1. A single aspect

Aspect is composed of its name, pointcuts, and
advices (Figure 4).

A single aspect contains zero or more point-
cut(s). The definition of one pointcut consists of
its name, type, and some definition body of the
pointcut. The type of a pointcut expresses the
type of join points which specifies a destination
of aspect weaving.

A single aspect contains zero or more ad-
vice(s). The definition of an advice consists of its
name, type, the pointcut name to apply it, and the
definition body of the advice. In the type of ad-
vice, the kind of processing contents performed
by the pointcut is described. When the definition
of two or more advices is described, the order of

<aspect name="sample-aspect">
<pointcut name="pointcut-1" type="domain">

<domain name="domain1">
</pointcut>

<advice name="advice1" type="add-class" ref="pointcut-1">
<class name="C" visiblity="public"/>

</advice>
</aspect>

Pointcut

Advice

Figure 4: The description example of a single aspect

<aggregate name="sample-aggregate1">
<aspect name="sample-aspect1">

</aspect>
<aspect name="sample-aspect2">

</aspect>
<aggregate name="sample-aggregate2">

</aggregate>
</aggregate>

Aspect

Aggregate

Figure 5: The description example of the grouping of
aspects

applying the advices is assumed to be the same
as the order of the definition.

2. The grouping of aspects

When two or more aspects exist, they can
be grouped as “Aggregate”. Aggregate is ex-
pressed with an “aggregate” tag. An aggregate
contains zero or more aggregate and aspect re-
spectively(Figure 5).

As a result, aspects can be hierarchically de-
scribed, and can be reused easily. The hierarchi-
cal aspects are applied in the appearance order of
the aspect definition.

5.3 The flow of weave to xUML model

Figure 6 shows the outline of aspect weaving for the
xUML models. The flow is as follows.

1. Translate the target xUML model from the dia-
gram form to the XML form.

2. Weave aspects to the xUML model in XML.

(a) Translate the aspect from the XML form to
XSLT form.

(b) Apply this XSLT to the target model using
the aspect weaver.

3. Translate the target xUML model from the XML
form to the diagrom form.

Model

Model

Model

Model

Aspect
XML

xUML

xUML

XML

XML

Weaver Aspect
XSLT

Figure 6: Outline of weaving aspect to xUML model

This aspect weaver has been implemented and re-
ported elsewhere [10].

6 Experiment for xUML Model
Transformation with Aspects

In order to confirm that the stepwise refinement de-
sign of xUML model can be performed using the pro-
posed aspect framework, we defined aspects for the
xUML model transformation [11] of “the separation
of a communication and an operation” which is one
of the refactoring rules defined in [2].

Figure 7 shows the class chart of the xUML
model before the aspect application. We made 49 as-
pects for the model transformation operation which
met “the separation of a communication and an op-
eration”, and these aspects were continuously woven
into the xUML model. As a result, the model transla-
tion equivalent to application of the refactoring rules
can be done automatically (Figure 8).

By this experiment, we confirmed that the pro-
posed aspects are able to formalize the stepwise re-
finement procedure for xUML and that the automation
of the stepwise refinement works well.

Refactoring rule of “the separation of a com-
munication and an operation”

1. The definition of a channel class (encapsulation of an
attribute and an event)

Define the channel class which encapsulated the at-

tribute and the event.

2. The addition of a channel class

(a) Replace attribute and event with the channel class,
and relate the channel class to behavior class of
sending and receiving side.

(b) Move the attribute and the event used in the chan-
nel class to the behavior class that calls the channel
class as a local value.

3. Update of a behavior class’s communication

Replace a description of the event access with a de-

scription of the access to the channel class.

The aspect description of “the separation of a
communication and an operation”

1. The definition of a channel class

aspect1 Adding channel class C2 to the class chart (add-class）
aspect2 Adding attributebuf to channel class C2 (add-attribute)
aspect3 Adding attributeflag to channel class C2(add-attribute)
aspect4 Adding operationsendto channel class C2

(add-operation)
aspect5 Adding parameterflag to operationsend

(add-parameter)
aspect6 Adding the action description to operationsend

(add-action)
...

aspect35 Adding the action description to stateEnd
(add-action)

2. The addition of a channel class

aspect36 Deleting the relation R5 between behavior class
B2 and B3 (remove-association)

aspect37 Adding relation R5 to behavior class B2 and channel
class C2 (add-association)

...
aspect42 Adding attributev2 to behavior class B3

(add-attribute)

3. Update of a behavior class’s communication

aspect43 Change the name of stateStart in behavior class B2
to StartC2Send(rename)

aspect44 Change the action description of stateStartC2Send
in behavior class B2 (replace-action)

...
aspect49 ChageEvente2 Signalin behavior class B3 to

returnSignal(modify-transition-signal)

7 Related Works
Yamazaki et al. presented attempts to introduce
aspect-oriented techniques to system-level design in
the SpecC language [12]. In this research, aspects ex-
press the stepwise refinement procedure of the SpecC
models, and they enable the designer to automate the
stepwise refinement work of the SpecC model. On the
other hand, our research attempts to introduce aspect-
oriented techniques to system-level design in xUML.
Aspects can express the stepwise refinement proce-
dure for the xUML model. This enable the designer
to automate the stepwise refinement work in xUML
as well.

Ubayashi et al. proposed a method of making a
MDA model compiler using the aspect-oriented tech-
niques [9]. In MDA, a model compiler transforms a
Platform-Independent Model (PIM) into a Platform-

 {no=6, kl=Bthree}
B3

operations

returnMain
startMain

attributes
{no=5, kl=Btwo}

B2

operations

returnMain
startMain

attributes

<<Parallel>>

{no=4, kl=BtwoBthree}
B2B3

operations

returnMain
startMain

attributes

v2:Integer

{no=3, kl=Bone}
B1

operations

returnMain
startMain

attributes

{no=2, kl=MAIN}
Main

operations

returnMain
startMain

attributes

v1:Integer

11
R5

1

1 R4

1

1R3

1

1 R2

1

1R1

Figure 7: Class diagram(Before aspect application)

 {no=7, kl=Ctwo}
C2

operations

returnChannel
readData
writeData
recv
send

attributes

flag:Integer
buf:void

{no=6, kl=Bthree}
B3

operations

returnMain
startMain

attributes

v2:Integer

{no=5, kl=Btwo}
B2

operations

returnMain
startMain

attributes

v2:Integer

<<Parallel>>

{no=4, kl=BtwoBthree}
B2B3

operations

returnMain
startMain

attributes

{no=3, kl=Bone}
B1

operations

returnMain
startMain

attributes

{no=2, kl=MAIN}
Main

operations

returnMain
startMain

attributes

v1:Integer

11

R6

11

R5

1

1

R7

1

1 R4

1

1R3

1

1 R2

1

1R1

Figure 8: Class diagram(After aspect application)

Specific Model (PSM) which includes platform spe-
cific information. In this research, aspects express
the platform information and this is weaved to UML
model. So, the model compiler is implemented as the
aspect processing system for UML model. We made
the aspect processing system for xUML [10]. Our re-
search uses this system for the stepwise refinement of
xUML models.

L. Fuentes et al. presented an idea to introduce the
AOP technology to xUML model in the field of soft-
ware design [13]. The essence of this idea is that the
aspect can be described in a xUML diagram as well
and that the dynamic join point is introduced. Our re-
search uses the AOP technology for the system-level
design. The essence of our idea is that the aspect is
described in XML, that the static join point is used,
and that aspcts can be hierarchical. Using the static
join points, we can transform easily the structure of
xUML models rather than using dynamic join points.
Also, hierarchical aspects facilitates the reuse of step-
wise refinement procedures.

8 Conclusions
In order to describe strict rules of the stepwise refine-
ment procedures and to automate the procedures, this
research proposes the formalization framework based
on aspect-oriented techniques. Through some exper-
iment, we confirmed that the stepwise refinement de-
sign with aspect is well perfomed in an automatic
manner.

Future works include making aspect templates for
the stepwise refinement procedure to reduce the labor
of new aspect definition.

Acknowledgments: This research was supported in
part by Joint Research Project with Nippon Signal Co.
Ltd..

References:

[1] Daniel D.Gajski, J. Zhu, R. Domer, A. Gerst-
lauer, and S. Zhao,SpecC: Specification Lan-
guage and Methodology,Kluwer Academic
Publishers, 2000.

[2] M. Kimura, N. A. Zakaria, A. Teruya, N.
Matsumoto, N. Yoshida,Stepwise Refinement
Based on Refactoring of Executable-UML,Proc.
IPSJ/IEICE Forum on Information Technology
2008, Vol.1, pp.39-42.

[3] Stephen J. Mellor, Marc J. Balcer,Executable
UML: A Foundation for Model-Driven Architec-
ture,Addison-Wesley Publishers, 2002.

[4] Stephen J. Mellor, K. Scott, A. Uhl, D. Weise,
Mda Distilled: Principles of Model-Driven Ar-
chitecture,Addison-Wesley Publishers, 2004.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts.Refactoring,Addison-Wesley, 1999.

[6] S. Chiba, Aspect-Oriented Programing(in
Japanese),Gijutsu-Hyohron Co., Ltd, 2005.

[7] UML Action Semantics,
http://www.omg.org/cgi-bin/doc?ptc/02-01-09

[8] iUML, Kennedy Carter Ltd.,
http://www.kc.com/

[9] N. Ubayashi, T. Tamai, S. Sano, Y. Maeno, S.
Murakami,Model Compiler Construction Based
on Aspect-Oriented Mechanisms,4th ACM SIG-
PLAN International Conference on Genera-
tive Programming and Component Engineering
(GPCE 2005), Lecture Notes in Computer Sci-
ence, Springer-Verlag, vol.3676, pp.109-124 ,
2005.

[10] E. Iwata, XSLT-based Implementation of As-
pects in Executable UML,(in Japanese,) Grad-
uate Thesis, Saitama University, 2008.

[11] A. Teruya, System Level Design Based on
Aspect-Oriented Executable UML,Graduate
Thesis, Saitama University, 2008.

[12] R. Yamasaki, K. Kobayashi, N. A. Zakaria, S.
Narazaki, N. Yoshida,Application of Aspect-
Oriented Techniques to System Level Design,
IEICE/IPSJ Information Technology Letters,
Vol.5, September 2006.

[13] L. Fuentes，P. Sanchez，Designing and Weav-
ing Aspect-Oriented Executable UML models，
Journal of Object Technology，2007.

